TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

# DEPARTMENT ELECTRICAL AND ELECTRONICS ENGINEERING UNIVERSITY EXAMINATION FOR: 

CERTIFICATE IN TECHNOLOGY

EEP 1101: ENGINEERING SCIENCE 1
END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2HOURS
DATE:

## Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Answer ANY THREE QUESTIONS.
Do not write on the question paper.

## QUESTION ONE

a) i. Explain the term 'polarization' as applied to batteries
ii. A battery is made up of four individual cells of which has an open circuit terminal voltage of 2 V and an internal resistance of $0.1 \Omega$, calculate;
I) Terminal voltage of the battery under no load condition
II) Current that flows when the battery terminals are short circuited (7 marks)
b) A battery of e.m.f 48 V and internal resistance $3 \Omega$ is charged on a 110 v.d.c supply, using the current method. If the lost of energy is sha. 0.95 per kwh, calculate;
I) The series resistance required to give a current of 4 A
II) The cost of charge the battery for 18 hours.

## QUESTION TWO

a) i. Define work
ii. Calculate the work done in raising a 2 kg mass of metal through a height of 20 meters, take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
(5 marks)
b (i) A vehicle which has a mass of 10 kg is moving at a velocity of $60 \mathrm{~km} / \mathrm{h}$, calculate its kinetic energy.
ii. Explain the terms vector and scalar quantities
(7 marks)
c)With the aid of a diagram,; Describe briefly the changes in the potential and kinetic energies of the bob of a simple pendulum as it goes from one side of its swing to the other. (8 marks)

## QUESTION THREE

a) i. Define the following terms as applied in magnetism;
I) Magnetic motive force
II) Reluctance
III) Magnetic flux
IV) Magnetic flux density
ii. Draw a diagram of the magnetic field produced by a current flowing in a long straight wire in a plane at right angles to the wire.
b) i. State a rule that gives the relation between the direction of the current and that of the field
ii. State four useful machines whose operation depends on the principle of a force in a current carrying conductor.
(8 marks)
c) A flux of $300 \mu$ webers passing through a 150 turns coil is reversed in 40 ms . Determine the average induced e.m.f

## QUESTION FOUR

a. (i) State Kirchoff's laws
(ii) From the circuit of figure 1 below, calculate;
(I) Total resistance
(II) Power dissipated by the $10 \Omega$ resistors
(III) Potential drop across R5 (12 $)$
(IV) Total power


Figure 1
(10 marks)
b. i) State Ohm's law
ii) Define the following electrical quantities and state their units:-
(I) Voltage
(II) Current
(III) Conductance
(IV) Conductivity
(V) Power
(10 marks)

## QUESTION FIVE

a (i) Determine the Therenin equivalent for the circuit in figure II between terminals ' $a$ ' and ' $b$ ' (5 marks)


Figure ii
(ii) Calculate (I) Current (II) Voltage across the $15 \Omega$ load resistor
(iii) If $\mathrm{R}_{\mathrm{L}}$ is a variable load resistor, calculate its value to develop maximum power across it. ( 9marks)
b. Obtain norton's equivalent circuit of figure II above (6 marks)

