TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING EMG 2304: MECHANICS OF MACHINES II END OF SEMESTER EXAMINATION
 SERIES:DECEMBER2016 TIME:2HOURS
 DATE:Pick DateDECEMBER 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This pa per consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

a) List FIVE causes of vibration (5 Marks)
b) An accelerometer indicates that the acceleration of a body is sinusoidal at a frequency of 40 Hz . If the maximum acceleration is $100 \mathrm{~m} / \mathrm{s}^{2}$ find the amplitude of the displacement and the maximum velocity.. (5 marks)
c) Determine the natural frequency of the system given in figure 1 . Let $k=10 \mathrm{~N} / \mathrm{m}$ and $m=50 \mathrm{Kg}$. (10 Marks)

Question TWO

a) A mass of 10 Kg when suspended from a spring, causes a static deflection of 0.02 m . Find the natural frequency.. (5 marks)
b) Derive the equation of motion for the system shown in figure 2. Use D'Alermbert's principle. (5marks)
c) A spring mass damper system has a mass of 6 kg , spring stiffness of $120 \mathrm{~N} / \mathrm{m}$ and damping coefficient of $6 \mathrm{~N} \mathrm{~s} / \mathrm{m}$. Determine;
i. Frequency of damped oscillation (5 marks)
ii. No of cycles after which the initial amplitude is reduced to 50%. (5 marks)

Question THREE

A centrifugal pump, with a mass of 50 kg and rotational speed of 3000 rpm , is mounted in the middle of a simply supported beam of length 100 cm , width 20 cm and thickness 0.5 cm . The damping ratio of the system (beam) can be assumed as $\xi=0.05$. The impeller (rotating part) of the pump has a mass of 5 kg with an eccentricity of 1 mm . If the maximum deflection of the beam is constrained to be less than the available rattle space of 3 mm , determine whether the support of the pump is adequate. Ignore the mass of beam(20 marks)

Let $k=\frac{48 E I}{L^{3}}, E=207 \times 10^{9} \mathrm{~Pa}$

Question FOUR

a) A rigid rotor has all its unbalance in one plane and can be considered to consist of three masses. $M_{1}=6 \mathrm{Kg}<0^{\circ}, M_{2}=5 \mathrm{Kg}<170^{\circ}$, and $M_{3}=10 \mathrm{Kg}<-75^{\circ}$. The radii at which these masses located are 20, $10,12 \mathrm{~cm}$ respectively. Determine the balancing mass required at a radius of 10 cm . Specify the location of this mass with respect to the first mass. (10 marks)
b) Twenty number of 1 cm diameter holes are to be punched every minute in a 1.5 cm steel plate whose resistance to shear is 353.16 MPa . The actual punching takes place one fifth of the interval between two successive operations. The speed of the flywheel is 300 rpm . Design a suitable cast iron rimmed flywheel with the coefficient of fluctuation of speed $=0.01$ and the maximum velocity of the rim equal to $60 \mathrm{~m} / \mathrm{s}$. (10 marks)

Question FIVE

a) In a spring controlled governor, the controlling force is a straight line. The mass of each ball is 10 kg . When the balls are 40 cm apart, the controlling force is 1200 N and when 25 cm apart, it is 450 N . Find the speed when the ball are 30 cm apart. (10 marks)
b) A trolley car of mass 5000 Kg with 4 wheels runs on rails which are 2 m a part and travels around z curve 50 m radius at speed $50 \mathrm{~km} / \mathrm{h}$. There is no super elevation of any of the rails. Each wheel of the trolley is of 40 cm radius and of the two axles is driven an engine at a speed five times the rotation of the wheels in an opposite direction. The mass of inertia of each wheel is $20 \mathrm{kgm}^{2}$. Each motor with shaft and gear pinion has a mass moment of inertia $15 \mathrm{kgm}^{2}$. The center of gravity of the car is about 80 cm above the rail level. Calculate the vertical gyroscopic reaction on the wheels. (10 marks)

FIGURE 2

