

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

EMG 2303: SOLID & STRUCTURAL MECHANICS I

EME 4354: SOLID & STRUCTURAL MECHANICS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

<u>Instructions to Candidates</u>

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Attempt any THREE questions.

Do not write on the question paper.

Question ONE

An alloy bar of 1 m has a Square section throughout, which tapers from one end of 10 mm x 10 mm to the other end of 20 mm x 20mm. Find the change in its length due to an axial tensile load of 30 kN. Take E for the alloy as 120GPa.

Question TWO

FigureQ2 shows the shear force diagram of a loaded beam. Determine the loading on the beam and draw the bending moment diagram.

Question THREE

A solid shaft of 200mm diameter has the same cross-sectional area as a hollow shaft of the same material with inside diameter of 150 mm. Find the ratio of:

- a) power transmitted by both the shafts at the same angular velocity.
- b) angles of twist in equal lengths of these shafts, when stressed to the same intensity...

Question FOUR

a) Show that the volumetric strain, \in_{v} of a vessel under internal pressure is given by:

$$\in_v = 2 \in_l + \in_c$$

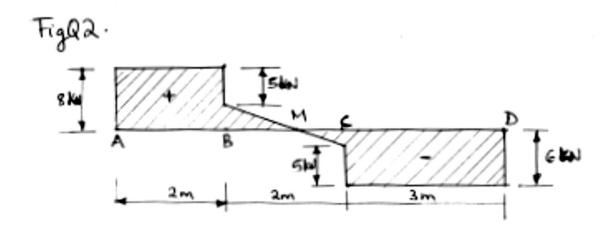
Where $\in_c = hoop strain$

$$\in_l = axial \ strain$$

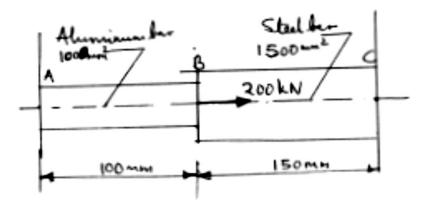
b) A steel container 2m internal diameter and 5m long is initially full of water. Determine the volume of water required to raise the pressure inside by $15 \times 10^6 \text{ N/m}^2$, if the ratio of thickness to diameter is 1/15.

Take K for water = $2.1 \times 10^9 \text{ N/m}^2$

E for steel =
$$210 \times 10^9 \text{ N/m}^2$$


And ϑ for steel = 0.3.

Question FIVE


A composite bar made up of an aluminium bar and a steel bar is firmly held between two unyielding supports as shown in figQ5.An axial load of 200kN is applied at B at 320 K. Find the stresses in each material when the temperature is

370 K.

Take
$$\propto_{alumium} = 24 \times 10^{-6} / K$$
. $\propto_{steel} = 12 \times 10^{-6} / K$ $E_{aluminium} = 70 GPa$ $E_{steel} = 210 GPa$

Figa 5

