TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN MEDICAL ENGINEERING EMG 2303 : SOLID \&STRUCTURAL MECHANICS I EME 4354 : SOLID \&STRUCTURAL MECHANICS END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2 HOURS
DATE: Pick Date Dec 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Choose instruction.
Do not write on the question paper.

Question ONE

a)Two solid cylindrical rods AB and BC are welded together at B as shown in FigQ1 below. Knowing that $d_{1=} 30 \mathrm{~mm}$ and $d_{2}=50 \mathrm{~mm}$, find the average normal stress in the mid-section of
i) $\operatorname{rod} A B \quad$ and $i i) \operatorname{rod} B C$.
b) A rigidly fixed circular bar 1.75 m long uniformly tapers from 125 mm diameter at one end to 100 mm diameter diameter at the other. If the maximum stress in the bar is not to exceed 108 MPa , find the temperature through which it can be heated. Take E and α for the bar material as 100 GPa and $18 \times 10^{-6} / \mathrm{K}$ respectively.

Question TWO

A simply supported beam is loaded as shown below in FigureQ 2. Analyse and draw both the bending moment diagram and shear force diagrams. Locate the points of contraflexure if any.

Question THREE

A shaft $A B C$ of 500 mm length and 40 mm external diameter is bored, for a part of its length $A B$ to a 20 mmm diameter and for the remaining length $B C$ to a 30 mm diameter bore as shown in figQ3. If the shear stress is not to exceed 80 MPa , find the maximum power, the shaft can transmit at a speed of 200 RPM.

If the angle of twist in the length of 20 mmm diameter bore is equal to that in the 30 mm diameter bore, find the length of the shaft that has been bored to 20 mmm and 30 mm diameter.

Question FOUR

a) Show that the volumetric strain, ϵ_{v}, of a vessel under internal pressure is given by:

$$
\epsilon_{v}=2 \epsilon_{l}+\epsilon_{c}
$$

Where $\epsilon_{c}=$ hoop strain

$$
\epsilon_{l}=\text { axial strain }
$$

b) A steel container 2 m internal diameter and 3 m long is initially full of water. Determine the volume of water required to raise the pressure inside by $10 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$, if the ratio of thickness to diameter is $1 / 20$.

Take K for water $=2.1 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
E for steel $=210 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
And
ϑ for steel $=0.3$.

Question FIVE

a) A round tapered alloy bar 4 m long is subjected to load as shown in FigureQ5 below.

Find the change in length of the bar. Take E for the bar material as 120 GPa.

Figures
FigQ1

FigQ2

FigQ 5
©Tec

