TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 Department of Mechanical \& Automotive Engineering
 UNIVERSITY EXAMINATION FOR:

BSc. Mechanical Engineering
EMG 2301 : FLUID MECHANICS II
END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS
DATE: Pick Date Dec 2016

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.
Maximum marks for each part of a question are as shown.
Do not write on the question paper.

Question One

a. Explain the following terms
i. Top width
ii. Hydraulic radius
iii. Hydraulic depth
b. Describe the following non-uniform flows in open channels
i. Rapidly varied flow
c. Find the bed slope of trapezoidal channel of bed width 6 m , depth of water 3 m and side slope of 3 horizontal to 4 vertical, when the discharge through the channel is 30 $\mathrm{m} 3 / \mathrm{s}$. Take chezy's constant to be $\mathrm{C}=70$ (6 marks)
d. .A rectangular channel 4 m wide has depth of water 1.5 m . The slope of the bed of the channel is 1 in 1000 and value of chezy s constant $C=55$ It is desired to increase the discharge to a maximum by changing the dimension of the section for constant area of the cross-section, slope of the bed and roughness of the channel. Find the new dimensions of the channel and increase in discharge
(7marks)

Question Two

a. Explain the following types of flow
i. Uniform flow
ii. Unsteady flow
b. Show that the work done by a force exerted by a water jet on a moving plate inclined in the direction of the jet is given by

Work done $=\rho g(V-U)^{2} \sin ^{2} \theta U$
Where
$\mathrm{P}=$ density $\mathrm{a}=$ area of the jet
$V=$ velocity of the jet, $u=$ velocity of plate in the direction of jet (5 marks)
c. A 75 mm diameter jet having a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a flat plate normal of which is inclined at 45 to the axis of the jet. Find the normal pressure on the plate.
i. When the plate is stationary
ii. When the plate is moving a velocity of $15 \mathrm{~m} / \mathrm{s}$ in the direction away from the jet. (6 marks)
d. A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{s}$. Find
i. The force on the plate
ii. Work done
iii. Efficient of the jet

Question Three

a. Define dimensional analysis and four of its uses
b. State for advantages of dimensional analysis
c. What are the advantages of model testing
d. Determine the dimensions of the following quantities
i. Discharge
ii. Force

Question Four

a. Derive an expression for the velocity distributed for viscous flow through a circular pipe. Also sketch the distribution of velocity and shear stress across a section of the pipe
(8marks)
b. A fluid of viscosity $0.7 \mathrm{Ns} / \mathrm{m}^{2}$ and specific gravity 1.3 is flowing through a horizontal circular pipe of 100 mm diameter. The maximum shear stress at the pipe wall is 196.2. Calculate
i. The pressure gradient
ii. Average velocity
(6 marks)
c. A crude oil of viscosity 0.97 poise and specific gravity 0.9 is flowing through a horizontal circular pipe of diameter 100 mm and of length 10 m . Calculate the difference of pressure at the two ends of the pipe, if 100 kg of the oil is collected in a tank in 30seconds.

Question Five

a. Explain the following terms
i. Major energy losses in pipe
ii. Minor energy losses in pipe
b. A horizontal pipe 150 mm in diameter is joined by sudden enlargement to a 225 mm diameter. Water is flowing through it at the rate of $0.05 \mathrm{~m}^{3} / \mathrm{s}$. find
i. Loss of head due to abrupt expansion
ii. Pressure difference in the two pipes
iii. Change in pressure if the change of section is gradual without losses. (7 marks)
c. Explain the water hammer phenomena
d. State the factors of which the magnitude of the pressure in a water hammer depends

