

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology Department of Mechanical & Automotive Engineering UNIVERSITY EXAMINATION FOR: BSc. Mechanical Engineering EMG 2301 : FLUID MECHANICS II END OF SEMESTER EXAMINATION SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE: Pick Date Dec 2016

Instruction to Candidates:

You should have the following for this examination

- Answer booklet
- Non-Programmable scientific calculator

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions.

Maximum marks for each part of a question are as shown.

Do not write on the question paper.

Question One

- a. Explain the following terms
 - i. Top width
 - ii. Hydraulic radius
 - iii. Hydraulic depth
- b. Describe the following non-uniform flows in open channels
 - i. Rapidly varied flow

(3marks)

ii. Gradually varied flow

(4marks)

c. Find the bed slope of trapezoidal channel of bed width 6m,depth of water 3 m and side slope of 3 horizontal to 4 vertical, when the discharge through the channel is 30 m3/s. Take chezy's constant to be C=70

(6 marks)

d. A rectangular channel 4 m wide has depth of water 1.5m. The slope of the bed of the channel is 1 in 1000 and value of chezy s constant C=55 It is desired to increase the discharge to a maximum by changing the dimension of the section for constant area of the cross-section, slope of the bed and roughness of the channel. Find the new dimensions of the channel and increase in discharge (7marks)

Question Two

- a. Explain the following types of flow
 - i. Uniform flow
 - ii. Unsteady flow (3 marks)
- b. Show that the work done by a force exerted by a water jet on a moving plate inclined in the direction of the jet is given by

```
Work done = \rho g (V-U)^2 \sin^2 \theta U
Where
P= density a=area of the jet
```

V= velocity of the jet, u= velocity of plate in the direction of jet

(5 marks)

(6 marks)

- c. A 75mm diameter jet having a velocity of 30m/s strikes a flat plate normal of which is inclined at 45 to the axis of the jet. Find the normal pressure on the plate.
 - i. When the plate is stationary
 - When the plate is moving a velocity of 15m/s in the direction away from the jet.
 (6 marks)
- A nozzle of 50mm diameter delivers a stream of water at 20m/s perpendicular to a plate that moves away from the jet at 5m/s. Find
 - i. The force on the plate
 - ii. Work done
 - iii. Efficient of the jet

Question Three

a.	Defin	e dimensional analysis and four of its uses	(6marks)
b.	State	for advantages of dimensional analysis	(6marks)
c.	What are the advantages of model testing		(6marks)
d.	Determine the dimensions of the following quantities		
	i.	Discharge	
	ii.	Force	(2marks)

Question Four

- a. Derive an expression for the velocity distributed for viscous flow through a circular pipe. Also sketch the distribution of velocity and shear stress across a section of the pipe (8marks)
- b. A fluid of viscosity 0.7 Ns/m^2 and specific gravity 1.3 is flowing through a horizontal circular pipe of 100mm diameter. The maximum shear stress at the pipe wall is 196.2. Calculate
 - i. The pressure gradient
 - ii. Average velocity
- c. A crude oil of viscosity 0.97 poise and specific gravity 0.9 is flowing through a horizontal circular pipe of diameter 100mm and of length 10m.Calculate the difference of pressure at the two ends of the pipe, if 100kg of the oil is collected in a tank in 30seconds. (6 marks)

Question Five

- a. Explain the following terms
 - i. Major energy losses in pipe
 - ii. Minor energy losses in pipe
- b. A horizontal pipe 150mm in diameter is joined by sudden enlargement to a 225mm diameter. Water is flowing through it at the rate of $0.05m^3/s$. find
 - i. Loss of head due to abrupt expansion
 - ii. Pressure difference in the two pipes
 - iii. Change in pressure if the change of section is gradual without losses. (7 marks)

(6 marks)

(4marks)

- c. Explain the water hammer phenomena
- d. State the factors of which the magnitude of the pressure in a water hammer depends

(4marks.)

(5marks)