

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

MASTERS OF SCIENCE IN CHEMISTRY

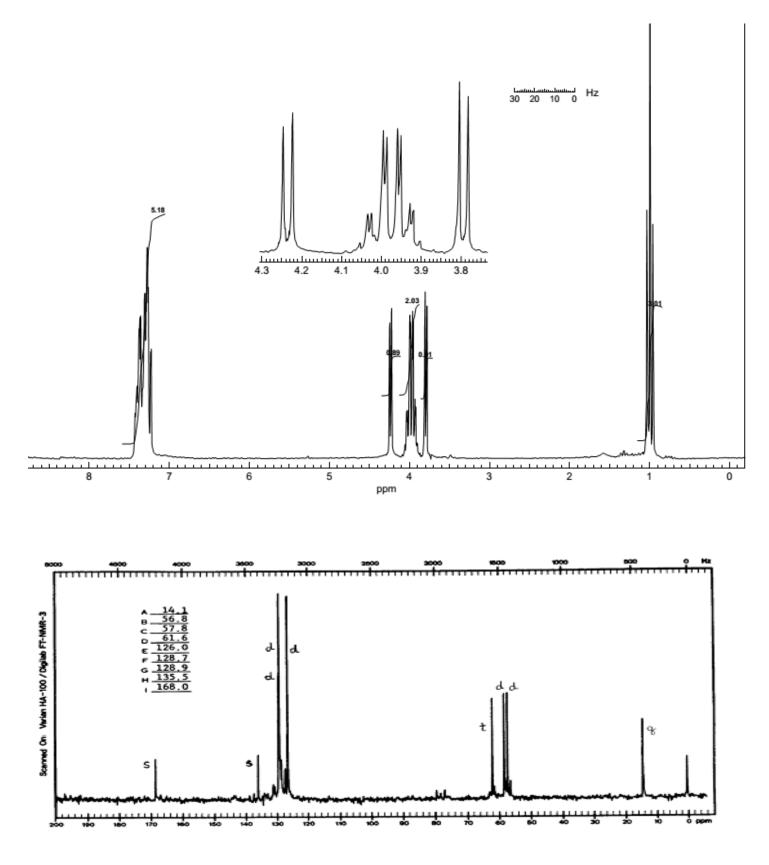
ACH 5108: ADVANCED SPECTROSCOPIC TECHNIQUES

END OF SEMESTER EXAMINATION

SERIES:AUGUST2017

TIME:3HOURS

DATE: Pick Date Aug 2017


Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **SIX**Question(s). Attemptany FOUR questions. **Do not write on the question paper.**

Question ONE

(a) What is peak resolution as applied in ¹H -NMR Spectroscopy? State four main factors which affect peak resolution in NMR spectroscopy. [5 marks]

(b) An organic molecule which has the molecular formula $C_{11}H_{12}O_3$ registered IR absorption signals associated with a carbonyl group and Aromatic ring. The ¹H-NMR and ¹³C-NMR spectra of the molecule are given below:

i. Compute the DBE of the molecule. [2 m

[2 marks]

ii. Identify significant peaks in the ¹³C- NMR spectrum of the compound and describe the structural information you obtain from them. [6 marks]

iii.	Draw the structure of the molecule and, label the structure with	¹ H chemical shifts and multiplicity of
	the protons in the same magnetic environment.	[10 marks]

iv. What feature(s) of the spectra would you use to determine the stereochemistry of the molecule?

[2 marks]

Question TWO

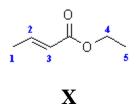
(a) Outline the theory of Electron spin resonance spectrometry.	[6 marks]
(b) Give detailed account on instrumentation of electron spin resonanace spectrometry.	[6 marks]
(c) Discuss the two relaxation methods in Electron spin resonance spectrometry.	[8 marks]
(d) Outline the applications of Electron spin resonance spectrometry in in nutraceutical and food research. [5 marks]	

Question THREE

(a) What is photoacoustic spectroscopy? Outline its main difference from conventional optical techniques.

[3 marks]

(b) Outline the difference between thermally thick sample and thermally thin sample as applied in Photoacoustic spectroscopy. [4 marks]		
(b) Describe the sample cell and detectors used in Photoacoustic spectroscopy.	[5 marks]	
(c) Outline the properties of sample which affect photoacoustic signal	[6 marks]	
(d) Outline the principle and advantages of gas phase photoacoustic spectrometry.	[5 marks]	
Question FOUR		
(a) Outline the role of various components of an NMR spectrometer.		
(b) Describe proton decoupled and off resonance decoupled techniques used in ¹³ C NMR.		
(d) Explain why		
 i. In ¹³C NMR proton less carbon exhibits low intensity. ii. CDCl₃ exhibits a triplet at δ 76, 77and 78 in its ¹³C NMR spectrum. 	[3 marks] [2 marks]	
(e) Give an account of deuterium substitution used in ¹³ C NMR.		


Question FIVE

(a) What is two dimensional NMR?	[2 marks]

(b) Describe the following two dimensional spectroscopy techniques

i.	HETCOR	[5 marks]
ii.	COSY	[6 marks]

(c) Make use of a sketch to describe COSY spectrum of ethyl 2-butenoate (X). Label the proton signals with the numbers provided on the structure of the molecule. [8 marks]

(d) Outline the two main relaxation processes in NMR spectroscopy

Question SIX

(a) Explain why hyphenated techniques usually involve chromatographic and spectroscopic techniques.

[4 marks]

(b) Describe the following hyphenated techniques clearly indicating their instrumentation and application.

i.	LC – NMR	[7 marks]
ii.	GC – NMR	[7 marks]
iii.	GC-MS	[7 marks]

[4 marks]