TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR:
 BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
 EMG 2207 : ENGINEERING MECHANICS (DYNAMICS) SPECIAL SUPPLEMENTARY EXAMINATION

SERIES: SEPT. 2017
TIME: 2 HOURS
DATE: Pick Date Sep 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Attempt any THREE questions.
Do not write on the question paper.

QUESTION ONE

A projectile is launched with speed ϑ_{o} from point A, FigureQ1.Determine the launch angle θ, which results in the maximum range, R up the incline of angle α where $0^{\circ} \leq \alpha \leq 90^{\circ}$

Evaluate your results for $\alpha=0^{0}, 30^{0}, 45^{0}$.
(20 marks)

QUESTION TWO

A pile driver hammer of mass 0.6 tonne falls 2.4 m from rest on to a pile of mass 100 kg . There is no rebound and the pile is driven 200 mm into the ground. Calculate
a) The common velocity after impact
b) The average resisting force of the ground in bringing the pile and driver to rest.

QUESTION THREE

a) Two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1200 kg and car B has mass 1600 kg . The cars become entangled and move off in the direction indicated figureQ3.If car A was travelling at $50 \mathrm{~km} / \mathrm{h}$ at the instant of impact, compute the corresponding speed of B just before impact. (13 marks)
b)An aircraft travelling due west at $600 \mathrm{~km} / \mathrm{h}$ just passes over another aircraft travelling due north at the same speed. What is the velocity and direction of the first aircraft relative to the second?

QUESTION FOUR

Two ships are steadily steaming towards each other. When 1000 m apart ship B takes avoiding action and turns through 30° to port. The speed of ship A is $20 \mathrm{~m} / \mathrm{s}$ and that of ship B is $30 \mathrm{~m} / \mathrm{s}$. Calculate their nearest distance apart and how long this distance is reached after B takes avoiding action. Neglect the time taken to alter the course.
(20 marks)

QUESTION FIVE

a) At any instance the horizontal position of a weather balloon is described by $X=8 t \mathrm{~m}$, where t is in seconds. If the equation of the path is $y=X^{2} / 10$ determine the magnitude and direction of velocity and acceleration when $t=2 \mathrm{sec}$.

FigQ1

FigQ3

