TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING UNIVERSITY EXAMINATION FOR:
 THE DEGREE IN BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING

TMC 4256 : THERMODYNAMICS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2017
TIME: 2 HOURS
DATE: Pick Date Aug 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of Choose No questions. Attempt Choose instruction.
Do not write on the question paper.

Question One

a) What is an Ideal gas
b) State and explain the following
i. Charle's Law
ii. Boyle's Law
iii. Avogadro's Law
(6 marks)
c) A gas occupies a volume of $0.1 \mathrm{~m}^{3}$ at a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 1.5 bar. Find the final temperature of the gas, if is compressed to a pressure of 7.5 bar and occupies a volume of $0.04 \mathrm{~m}^{3}$.
(4 marks)
d) A quantity of gas has a pressure of $350 \mathrm{KN} / \mathrm{m}^{2}$ when its volume is 0.03 m 3 and its temperature is 350 c.If the value of $\mathrm{R}=0.29 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$.
i. Calculate the mass of the gas .
ii. If the gas pressure is increased to $1.05 \mathrm{MN} / \mathrm{m}^{2}$ while the volume remains constant, Calculate new temperature.
(8 marks)

Question Two

a. State first law of thermodynamics.
b. Derive the equation for working the following cases
i. Constant Volume process.
ii. Constant Pressure
(6 marks)
c. A certain gas occupies a space of $0.3 \mathrm{~m}^{3}$ at a pressure of 2 bar and a temperature of $77^{\circ} \mathrm{C}$. It is heated at a constant volume, until the pressure is 7 bar. Determine:
i. Temperature at the end of the process
ii. Mass of the gas
iii. Change in internal energy

Assume $c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad c_{V}=0.712 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \quad$ and $\quad \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
d. $0.015 \mathrm{~m}^{3}$ gas at constant pressure of $2060 \mathrm{Kn} / \mathrm{m} 2$ expands to a pressure of $210 \mathrm{KN} / \mathrm{m}^{2}$ by following the law $\mathrm{PV}^{1.35}=\mathrm{C}$. Determine the work done by the gas during expansion process.

Question Three

a) Define the following terms
i. Heat Pump
ii. Heat engine
iii. Thermal reservoir.
(6 marks)
b) State Kelvin-Planck and Clausius statements of second Law of thermodynamics marks)
c) A cyclic heat engine operates between a source temperature of $800^{\circ} \mathrm{C}$ and a sink temperature of $30^{\circ} \mathrm{C}$.find the least rate of heat rejection per kW net output of the engine?
(5 marks)
d) A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives an output of 8.2 kW . Determine :
i. The thermal efficiency
ii. The rate of heat rejection

Question Four

a) Define the following terms
i. Sensible heat of water
ii. Superheated steam
iii. Total heat of steam
b) Describe the process of formation steam and give it's graphical representation also. (8 marks)
c) Calculate the quantity of heat required to produce 1 kg of steam at a pressure of 6 bar at a temperature of $25^{\circ} \mathrm{C}$, under the following conditions:
i. When the steam is wet having a dryness fraction of 0.9
ii. When the steam us dry saturated.
iii. When it is superheated at a constant pressure at $250^{\circ} \mathrm{C}$. Assuming the mean specific heat of superheated steam is $2.3 . \mathrm{kJ} / \mathrm{kg} \mathrm{K}$.
[use: from steam tables ,for 6 bar $\mathrm{h}_{\mathrm{f}}=670.4 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{fg}}=2085 \mathrm{kj} / \mathrm{kg}, \mathrm{t}=158.8^{\circ} \mathrm{K}$]

Question Five

a) State eight advantages of each case below
i. liquid fuels over sold fuels.
ii. Gaseous fuels over liquid fuels
b) State the assumptions made in the analysis of steady flow energy equation.
c) At the inlet to a certain nozzle the enthalpy of fluid passing is $2800 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $50 \mathrm{~m} / \mathrm{s}$. At the discharge end the enthalpy is $2600 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it.
i. Find the velocity at the exit of the nozzle.
ii. If the inlet area is $900 \mathrm{~cm}^{2}$ and the specific volume at inlet is $0.187 \mathrm{~m}^{3} / \mathrm{kg}$. Find the mass flow rate.
iii. If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$. Find the area of the nozzle.
(7marks)

