

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL

ENGINEERING

EMG 2205 : FLUID MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: AUGUST 2017

TIME: 2 HOURS

DATE: Pick Date Sep 2017

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question ONE

- a) Define the following terms
 - i. Specific weight
 - ii. Density
 - iii. Specific gravity
 - iv. Specific volume
- b) State the Newton's law of viscosity
- c) Define the following types of thirds
 - i. Newtonian
 - ii. Non-Newtonian
- d) 2 litres of petrol weighs 13.72N. calculate
- i. Specific weight

©Technical University of Mombasa

(3marks)

(6 Marks)

(2marks)

- ii. Density
- iii. Specific volume
- iv. Specific gravity with aspect to water
- e) Two horizontal flat plates are placed 0.15mm apart and the space between them is filled with an oil of viscosity 1poise. The upper plate of area $1.5m^2$ is required to move with a speed of 0.5m/relative to the other plate. Calculate the necessary force and power required to maintain this speed (1 poise = $0.1 \text{ N}_3/\text{M}^2$) (3marks)

Question TWO

- a) Explain the following terms
 - i. Absolute pressure
 - ii. Gauge pressure
 - iii. Vacuum pressure

(3marks)

(6marks)

b) A multiple U-tube manometer is fitted to a pipe with centre at A as shown in Fig 1.Determine the pressure at A.

(4 marks)

- c) Explain the capillarity Phenomenon (2 marks)
- d) Derive the expression for height of capillary rise (5marks)
- e) Determine the capillary depression of mercury in a 2 mm ID glass tube. Assume $\sigma = 0.5$ N/m and $\beta = 130^{\circ}$. Specific weight of mercury, $\gamma = 13600 \times 9.81$ N/m³ (3marks)

Question THREE

©Technical University of Mombasa

- a) Describe the following devices used for measuring the rate of flow
 - i. Notch
 - ii. Weir
 - iii. Orifice

(4marks)

b) Find the discharge over a stepped rectangular notch as shown below. Take co-efficient of discharge for all the portions as 0.62

- c) Define the following terms
 - i. Total pressure
 - ii. Centre of pressure

(2marks)

(10marks)

- d) An Isoscales triangular plate of base 3m and height 3m is immersed vertically in a specific gravity 0.8.
 The base of the plate coincides with the free surface of the Oil. Calculate
 - i. Total pressure on the plateii. Centre of pressure (4marks)

Question FOUR

a) l	a) Describe Ven-contracta		(2marks)
b) l) Define the following co-efficients		
	i.	Co-efficient of velocity	
	ii.	Co-efficient of contraction	
	iii.	Co-efficient of discharge	(6marks)

- c) A vertical sharp-edged orifice 120mm diameter is discharging water at the 98.2 litre/second under a constant head of 10 metres. A point of jet measured from Vena contracta of the jet has co-ordinates 4.5metres horizontal and 0.54 metres vertical. Find the following for the Orifice.
 - i. Co-efficient of velocity
 - ii. Coefficient of contractions
 - iii. Co-efficient of discharge

- (8marks)
- d) Explain briefly how the coefficient of velocity of a jet issuing through an orifice can be determine experimentally (4marks)
- e) Calculate the capillary effect in millimeters in a glass tube of 4mm diameter when inner side in
 - i. Water
 - Mercury. The temperature of the liquid is 20°c and the values of the surface tension of water and mercury at 20°c in contact with air are 0.073575N/M and 0.51N/M respectively. The angle of contact for water is Zero and that for mercury 1.30°. take density of water at 20°c equal to 998Kg/M³ (4marks)

Question FIVE

a) (i) Describe a ventrimeter

(ii) Describe a pitot tube

b) Show that the theoretical discharge of a venturimeter is given by

Q theoretical=2gh

$A_1 A_2$	
$\sqrt{A_1^2 - A_2^2}$, V

Where A_1 and A_2 are cross-sectional at point 1 and point 2 (6marks)

- c) A horizontal venturimeter with inlet diameter 200mm and throat diameter 100mm is used to measure the flow of water. The pressure at inlet is 0.18N/mm2 and the vacuum pressure at the throat is 280mm of mercury. Find the rate of flow. The value of d may be taken as 0.98.
- d) A pitot static tube is mounted on an aircraft travelling at a speed 300 kmph against a wind velocity of 20 kmph. If the specific weight of air is 12 N/m3 determine the pressure difference the instrument will register. (4 marks)

(4marks)