FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR: THE DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
 EMG 2205 :FLUID MECHANICS I SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: AUGUST 2017
 TIME: 2 HOURS
 DATE: Pick Date Sep 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

a) Define the following terms
i. Specific weight
ii. Density
iii. Specific gravity
iv. Specific volume
b) State the Newton's law of viscosity
c) Define the following types of thirds
i. Newtonian
ii. Non-Newtonian
d) 2 litres of petrol weighs 13.72 N . calculate
i. Specific weight
ii. Density
iii. Specific volume
iv. Specific gravity with aspect to water
e) Two horizontal flat plates are placed 0.15 mm apart and the space between them is filled with an oil of viscosity 1 poise. The upper plate of area $1.5 \mathrm{~m}^{2}$ is required to move with a speed of $0.5 \mathrm{~m} /$ relative to the other plate. Calculate the necessary force and power required to maintain this speed $\left(1\right.$ poise $\left.=0.1 \mathrm{~N}_{3} / \mathrm{M}^{2}\right)$
(3marks)

Question TWO

a) Explain the following terms
i. Absolute pressure
ii. Gauge pressure
iii. Vacuum pressure
b) A multiple U-tube manometer is fitted to a pipe with centre at A as shown in Fig 1.Determine the pressure at A.

c) Explain the capillarity Phenomenon
d) Derive the expression for height of capillary rise
e) Determine the capillary depression of mercury in a 2 mm ID glass tube. Assume $\sigma=0.5 \mathrm{~N} / \mathrm{m}$ and $\beta=130^{\circ}$. Specific weight of mercury, $\gamma=13600 \times 9.81 \mathrm{~N} / \mathrm{m}^{3}$

Question THREE

a) Describe the following devices used for measuring the rate of flow
i. Notch
ii. Weir
iii. Orifice
b) Find the discharge over a stepped rectangular notch as shown below. Take co-efficient of discharge for all the portions as 0.62

c) Define the following terms
i. Total pressure
ii. Centre of pressure
d) An Isoscales triangular plate of base 3 m and height 3 m is immersed vertically in a specific gravity 0.8 . The base of the plate coincides with the free surface of the Oil. Calculate
i. Total pressure on the plate
ii. Centre of pressure

Question FOUR

a) Describe Ven-contracta
b) Define the following co-efficients
i. Co-efficient of velocity
ii. Co-efficient of contraction
iii. Co-efficient of discharge
c) A vertical sharp-edged orifice 120 mm diameter is discharging water at the 98.2 litre/second under a constant head of 10 metres. A point of jet measured from Vena contracta of the jet has co-ordinates 4.5 metres horizontal and 0.54 metres vertical. Find the following for the Orifice.
i. Co-efficient of velocity
ii. Coefficient of contractions
iii. Co-efficient of discharge
(8marks)
d) Explain briefly how the coefficient of velocity of a jet issuing through an orifice can be determine experimentally
(4marks)
e) Calculate the capillary effect in millimeters in a glass tube of 4 mm diameter when inner side in
i. Water
ii. Mercury. The temperature of the liquid is $20^{\circ} \mathrm{c}$ and the values of the surface tension of water and mercury at $20^{\circ} \mathrm{c}$ in contact with air are $0.073575 \mathrm{~N} / \mathrm{M}$ and $0.51 \mathrm{~N} / \mathrm{M}$ respectively. The angle of contact for water is Zero and that for mercury 1.30°. take density of water at $20^{\circ} \mathrm{c}$ equal to $998 \mathrm{Kg} / \mathrm{M}^{3} \quad$ (4marks)

Question FIVE

a) (i) Describe a ventrimeter
(ii) Describe a pitot tube
b) Show that the theoretical discharge of a venturimeter is given by

Q theoretical=2gh
$\mathrm{A}_{1} \quad \mathrm{~A}_{2}$

Where A_{1} and A_{2} are cross-sectional at point 1 and point 2
c) A horizontal venturimeter with inlet diameter 200 mm and throat diameter 100 mm is used to measure the flow of water. The pressure at inlet is $0.18 \mathrm{~N} / \mathrm{mm} 2$ and the vacuum pressure at the throat is 280 mm of mercury. Find the rate of flow. The value of d may be taken as 0.98 .
d) A pitot static tube is mounted on an aircraft travelling at a speed 300 kmph against a wind velocity of 20 kmph . If the specific weight of air is $12 \mathrm{~N} / \mathrm{m} 3$ determine the pressure difference the instrument will register.

