

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (INDUSTRIAL OPTION)

BTAC 12S SEPT 2012

ACH 4409 **REACTOR DESIGN**

END OF SEMESTER EXAMINATION

SERIES:MAY 2016

TIME:2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question one compulsory and any other two question

Do not write on the question paper.

QUESTION ONE

\mathbf{L}		
A.	Discuss the causes of deviation in ideal packed bed reactor	4 marks
B.	State :-	
	i. advantages of Semi-Batch Operation	4 marks
	ii. Disadvantages of Fluidized bed reactors.	4 marks
C.	Sketch the concentration- time trajectory for the reaction C_{AO} =	$= 4 \text{mol/L}$, $C_{BO} = 6 \text{mOl/L}$ $C_{CO} =$
	$C_{DO} = 0 mol/L$	3 Marks
D.	The BP of benzene at 101325 Pascal is 353.25 K. determine	the pressure at which benzene
	will boil at 298.15K, Given standard enthalpy of vaporisation a	s 30.8 kJ mol ⁻¹ . 4 marks

E. With the help of rate equation Show how selectivity of the following reaction can be maximise 4 marks

 $A \xrightarrow{k_D} D$ (desired)

 $A \xrightarrow{k_U} U$ (undesired)

Paper one

- F. Using general mole balance equation, show
 - that the design equation for a plug flow reactor is i.

$$V_{PFR} = FAO \int_{O}^{X_A} \frac{dx_A}{-\lambda A}, \quad \varepsilon_A = O$$
 5 Marks

graphically how space time of a plug flow reactor can be determined 2 Marks ii.

QUESTION TWO

- A. Define minimum fluidization velocity 2 Marks
- B. Discuss different factors affecting performance of Packed bed Reactor 5 marks
- C. Use Algorithm methode to write the net rate law of specis A and C in the following multiple reaction taking place in plug flow Reactor.
 - $A + 2B \rightarrow$ I С $2A + 3C \rightarrow$ Π D 5 Marks
- D. The rate of the gas phase reaction between H₂ and I₂ is 2.5 x 10^{-3} L/mols at 630K under a total pressure of 1atmp. Assuming the activation energy for the reaction as 163 kJ/mol, calculate the collision frequency between H_2 and I_2 . **5 Marks**
- E. State characteristic of ideal Batch Reactor

QUESTION THREE

- A. with the aid of a diagram explain the operation features of Fluidised bed Reactor 6 Marks
- B. Reactant A $C_{AO} = 100$ milimol flow into mixed reactor of volume V = 0.1L. dimersies by reactioin 2A \rightarrow R. Calculate fractional conversion of A when initial concentration reduces to 66.7milimol. 4 marks C. Discuss plug flow pattern assumptions 3 marks
- D. Outline characteristic of the ideal continuous stirred tank reactor (CSTR 3 Marks
- E. Define (i) Complex Reaction (ii)Series reactions

QUESTION FOUR

A.	Differentiate b	between Fixed B	ed Reactor and	Fluid Bed Reactor	4 marks
----	-----------------	-----------------	----------------	-------------------	---------

- B. Outline different steps used to design chemical reactors
- C. Define four types of catalytic Reactors
- **D.** 1L/minutes of liquid contain A and B ($C_{AO} = 0.1 \text{mol/L}$, $C_{BO} = 0.01 \text{mol/L}$) flow into mixed reactor of volume V = 1L. Outlet stream from reactor contains A, B, and C (C_{AF} = 0.02mol/L), $C_{BF} = 0.03mol/L$ and $C_{CF} = 0.04$) find the rate of reaction of A, B, C for conditions within reactor. 6 marks

QUESTION FIVE

- A. State the Aplications, advantages and disadvantages of Tubuler Reactor 6 marks
- B. The solubility product constant of calcium hydroxide was measured at several temperatures, as given below. Using van't Hoff plot, determine the value of Enthalpy change and Entropy change $\triangle H^{\circ}$ and $\triangle S^{\circ}$. **10Marks**

3 Marks

4 Marks

4 mark

- 5 marks

Temperature in ⁰ C	10	20	30	40	50	60	70	80	90
ln K _{sp}	-12.11	-12.25	-12.65	-12.82	-12.90	-13.17	-13.41	-13.41	-13.63

C A gas mixture consist of 2moles of A and 2 moles of B at 10 atmospheric pressure enter the CSTR reactor with flow rate of $6dm^3$ /seconds at 422 kelvin the following data were obtained. calculate the volume necessary to achive 70% conversion in CSTR **4 marks**

Fractional conversion X _A	0.0	0.2	0.6	0.7	0.8	0.85
Rate of reaction $-r_A$ (10 ⁻³)	5.3	5	2.5	1.8	1.25	1.0

,