

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF TECHNOLOGY IN MECHANICAL

ENGINEERING

TMC 4225 : FLUID MECHANICS II

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2017

TIME: 2 HOURS

DATE: Pick Date Aug 2017

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any THREE questions. **Do not write on the question paper.**

Question ONE

a)	Define dimensional analysis	(2 marks)	
b)	State FOUR uses and advantages of dimensional analysis	(8 marks)	
c)	(Explain the term Dimensional Homogeneity	(2 marks)	
d)	State FOUR application of Dimensional Homogeneity	(2 marks)	
e)	ind an expression for a drag force on smooth sphere of Diameter D moving with a uniform velocity		
	in a fluid of density p and dynamic viscosity u	(6 marks)	

Question Two

- a) Define the following terms:
 - i. Major energy losses in pipes
 - ii. Minor energy losses in pipes

- iii. Hydraulic gradient line
- iv. Total energy line
- b) In a pipe of 300mm diameter and 800 m length an oil of specific gravity 0.8 is flowing at the rate of 0.45m3/s Find
 - i. Head lost due to friction.
 - ii. Power required to maintain the flow.

Take the kinematic viscosity of oil as 0.3 stoke.(6 marks)

- c) A horizontal pipe 150 mm in diameter, is joined by sudden enlargement to a 225 mm diameter pipe. Water is flowing through it at the rate of 0.05m3/s.Find
 - i. Loss of head due to abrupt expansion
 - ii. Pressure difference in the two pipes
 - iii. Change in pressure if the change of section is gradual without any loss. (8 marks)

Question Three

- a) Explain the following terms
 - i. Turbulent boundary layer
 - ii. Laminar boundary layer
- b) Describe fine the following boundary layer
 - i. Displacement thickness
 - ii. Momentum thickness
 - iii. Energy thickness
- a) The velocity distribution in the boundary layer is given by:

$$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

Where *u* is the velocity at a distance y from the plate and u = U at $y = \delta$, where δ = boundary layer thickness. Find

- i. The displacement thickness.
- ii. The momentum the thickness.
- iii. The energy thickness.

Question Four

- a) Explain the following types of flow
 - i. Steady uniform flow
 - ii. Unsteady non-uniform flow
- b) Show that the work done by a force exerted by a water jet on a moving plate inclined in the direction of the jet is given by

(6 marks)

(4marks)

(10 marks)

(4 marks)

(6 marks)

 $F_X = \rho a V^2 \sin^2 \theta$

Where

 ρ = density, a = area of the jet , V = velocity of the jet, Θ =inclination of the plate with the jet (8 marks)

c) A nozzle of 60mm diameter delivers a stream of water at 24m/s perpendicular to a plate that moves away from the jet at 6 m/s. Calculate

	i.	The force on the plate			
	ii.	The work done			
	iii.	Efficiency of the jet.	(8 marks)		
Question Five					
a)	a) Describe the following types of flow				
	i.	Steady flow			
	ii.	Laminar flow			
	iii.	Compressible flow	(6 marks)		
b)) Explain the water hammer phenomenon. (3 marks)		(3 marks)		
c)	c) A 25 cm diameter pipe carries oil of specific gravity of 0.9 at a velocity of 3 m/s. At another section				
	diame	ter is 20 cm. Find the velocity at this section and also mass rate flow of oil.	(5 marks)		
d)	State	four factors of which the pressure rise due to water hammer depends.	(6 marks)		