

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

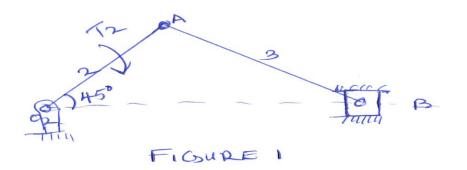
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2203: ENGINEERING MECHANICS - STATICS

END OF SEMESTER EXAMINATION

SERIES:DECEMBER2016

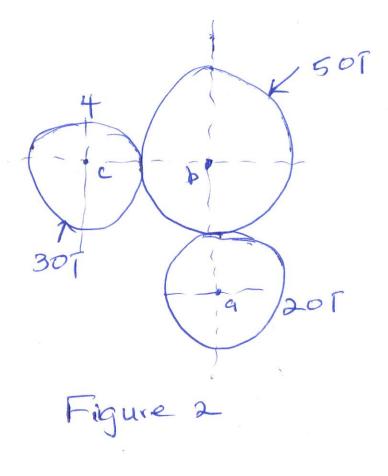
TIME:2HOURS


DATE:Pick DateDECEMBER 2016

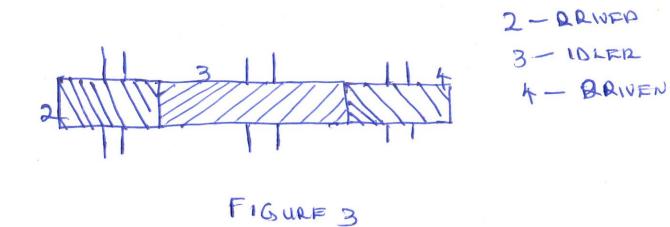
Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt **any THREE questions**. **Do not write on the question paper.**

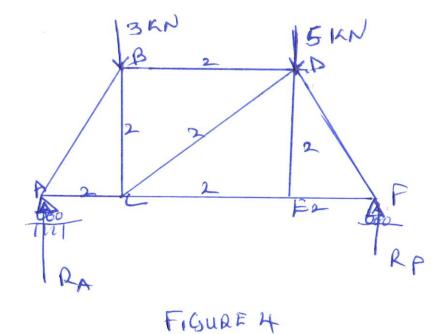
Question ONE


- a) State the condition for a body to be deemed to be in equilibrium in a single plane (5marks)
- b) Draw the free body diagram of figure 1 (5 Marks)
- c) Determine the magnitude and directions of all the forces. Let OA = 10 cm, AB = 45 cm, angle $BOA = 45^{\circ}$ and torque on link 2 to be taken as 5000 Ncm. (10 marks).

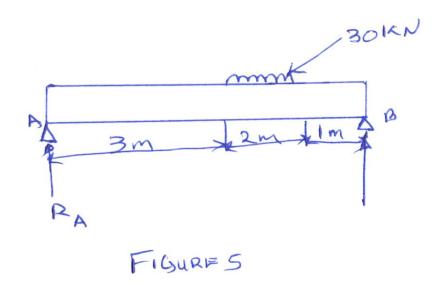
Question TWO


The driver a simple spur gear is shown in figure 2. Pinion 2 runs at a speed of 1750 r.p.m and transmit a power of 2.5 Kw to idler gear 3. The teeth have a pressure angle of 20° and module of 2.5 mm.

- a) Draw the free body diagram of gear 3 (10 marks)
- b) Determine all forces that act on it (10 marks)


Question THREE

The driver of a simple helical train is shown in figure 3 is right handed helical gear having a pitch radius of 4 cm, a traverse pressure angle 20° and a helix angle 30°. The pitch radii of the idler wheel and the driven gear are 8 and 6 cm respectively. If the input torque is 15 KNcm determine the shaft forces. (20 marks)


Question FOUR

Determine the reactions at the supports and the magnitude forces in each member of the frame shown in figure 4. (20 marks)

Question FIVE

- a) A beam is loaded as shown in figure 5. Determine and draw the shear force diagram (10 marks)
- b) Determine and draw the bending moment diagram (10 marks)

