

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

SECOND YEAR FIRST SEMESTER

EEE 4233: ELECTRICAL MACHINES

END OF SEMESTER EXAMINATION

SERIES: DEC 2016

TIME:2HOURS

DATE: 5th DEC 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any three questions, all questions carry equal marks.

Do not write on the question paper.

Question ONE

(i)

- a) Explain the function of the following parts of a D.C machine
- (ii) Commutator (4mks)
 b) A 20KW, 250V D.C shunt generator has armature and field resistances of 0.1Ω and 125Ω respectively. Determine the total armature power developed when running as:
 - (i) A generator delivering 20KW output
 - (ii) A motor taking 20KW input

Field system

c) Show that the D.C motor speed is given by;

$$\mathbf{N}=\frac{V-I_aR_a}{K\phi},$$

Where,

N = motor speed V = supply voltage I_a = armature current R_a = armature resistance

Question TWO

- a) Single phase A.C motors are not self-starting. Explain.
- b) With an aid of a circuit diagram, describe the operation of a capacitor start capacitor run single phase A.C motor
- c) At starting, the windings of 230V, 50HZ split phase induction motor have the following:

Main winding: $R = 4\Omega$. $X_l = 7.5\Omega$ Starting winding $R = 7.5\Omega$, $X_l = 4\Omega$ Determine: (i) Current in the main winding (I_m)

- (ii) Current in the starting winding (I_s)
- (iii) Phase angle between I_m and I_s
- (iv) Line current
- (v) Power factor

Question THREE

a) State the three conditions that must be met before a machine can be synchronized with the power supply. (3mks)

2

(10 mks)

(6mks)

(10 mks)

(3mks)

(7mks)

- b) With an aid of a diagram describe the operation of lamps in sequence synchronization method. (7mks)
- c) With an aid of a diagram, describe the operation of a pony motor start method of a three phase synchronous motor. (10mks)

Question FOUR

a) Show that the single phase transformer EMF equation is given by:

$$\mathbf{E} = 4.44 \mathbf{f} \boldsymbol{\phi}_m \mathbf{N} \tag{8mks}$$

- b) The input current to a three phase step down transformer connected to 11kv supply system is 14A. Determine the secondary line voltage and current for:
 - (i) Star-star connection
 - (ii) Delta-star connection if the phase turns ratio is 44. (12mks)

Question FIVE

- a) A 250v shunt motor on no load runs at 1000rpm and takes 5A. the total armature and shunt field resistance are 0.2Ω and 250Ω respectively. Determine the speed when the motor is loaded and takes a current of 50A if the armature reaction weakens the main field by 3%. (10mks)
- b) Show that the maximum starting torque of a three phase induction motor is obtained when ;

 $X_2 = R_2$

where;

 R_2 = rotor resistance/phase X_2 = stand still rotor reactance/phase

(10mks)