

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

SECOND YEAR SEMESTER ONE

EEE 4232: CIRCUIT AND NETWORK ANALYSIS

SPECIAL SUPPLEMENTARY EXAMINATION

SERIES: SEPT. 2017

TIME:2HOURS

DATE: SEPT. 2017

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attempt any three questions, all questions carry equal marks.

Do not write on the question paper.

Question ONE

- a) i) State superposition theorem.
 - ii) In the network of Fig 1(a), use superposition theorem to determine the:
 - I. Potential difference across 18Ω resistor.
 - II. Current in the 8V battery.
 - III. Current in the 3V battery

(11mks)

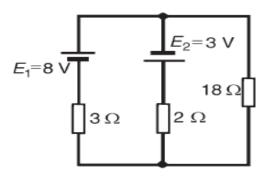


Fig 1(a).

- b) Use the mesh analysis theorem in Fig 1(b) to determine:
 - (i) The voltage drop across 5Ω resistor
 - (ii) The current flowing along 8Ω resistor

(9mks)

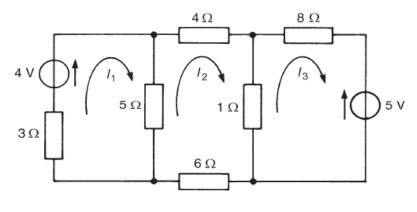


Fig 1(b)

Question TWO

- .a) An alternating voltage is given by the expression $V = 75\sin(200\pi t 0.25)$ volts. Determine Its:
 - (i) Amplitude
 - (ii) Peak to peak value
 - (iii) Rms value
 - (iv) Periodic time
 - (v) Frequency
 - (vi) Phase angle (12mks)
- b) A coil of resistance 5Ω and inductance 120mH in series with a 100μ F capacitor is connected to a 300V, 50HZ supply. Determine the:
 - (i) Supply current

- (ii) Phase difference between the supply voltage and the current
- (iii) Voltage across the coil
- (iv) Voltage across the capacitor (8mks)

Question THREE

- a) State the kirchoff's current law. (2mks)
- b) In the network of Fig 3(b), use Nodal analysis theorem to determine:
 - (i) The voltage at nodes 1 and 2
 - (ii) The current flowing along $j4\Omega$ inductor
 - (iii) The current flowing along the 5Ω resistor
 - (iv) The magnitude of the active power dissipated along 2.5Ω resistor (12mks)

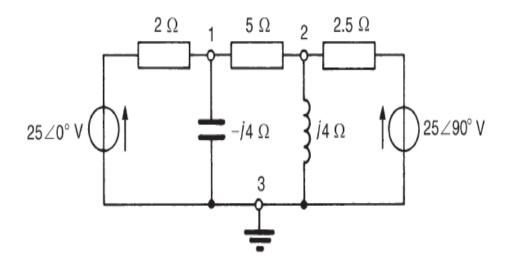


Fig 3(b)

c) Determine the value of load resistor R_l shown in Fig 3(c) that gives maximum power dissipation hence determine the value of the power. (6mks)

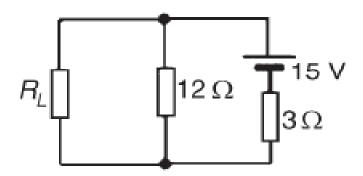


Fig 3(c)

Question FOUR

- a) Define the following terms as used in filter network
 - (i) Filter
 - (ii) Characteristic impedance (2mks)
- b) With aid of a low pass T-section network, show that;

$$Z_{0T} = \sqrt{\frac{L}{C} - \frac{\omega^2 L^2}{4}} \tag{10mks}$$

c) Calculate the characteristic impedance and cut-off frequency of T-section low pass filter having series arms of 30mH and a shunt arm of $0.176\mu F$ hence draw the network.

(8mks)

Question FIVE

- a) Using Delta- star transformation in Fig 5(a), determine the:
 - (i) Equivalent circuit impedance across terminals A and B
 - (ii) Supply current I
 - (iii) Power dissipated in the 10Ω resistor

(12mks)

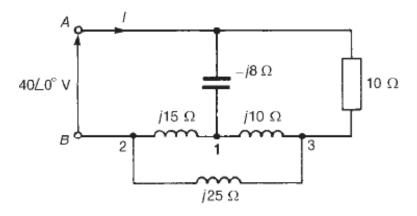


Fig 5(a)

b) Design a T-section band stop filter network to stop all frequencies between 400HZ and 1KHZ. The load impedance is 600Ω . Draw the network. (8mks)