TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MEDICAL ENGINEERING
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MEDICAL ENGINEERING
SECOND YEAR SEMESTER ONE
EEE 4232: CIRCUIT AND NETWORK ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: DEC 2016
TIME:2HOURS
DATE: 5 ${ }^{\text {th }}$ DEC 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any three questions, all questions carry equal marks.
Do not write on the question paper.

Question ONE

a) i) State superposition theorem.
ii) In the network of Fig 1(a), use superposition theorem to determine the:
I. Potential difference across 18Ω resistor.
II. Current in the 8 V battery.
III. Current in the 3 V battery

Fig 1(a).
b) Use the mesh analysis theorem in Fig 1(b) to determine:
(i) The voltage drop across 5Ω resistor
(ii) The current flowing along 8Ω resistor

Fig 1(b)

Question TWO

.a) An alternating voltage is given by the expression $V=75 \sin (200 \pi t-0.25)$ volts. Determine Its:
(i) Amplitude
(ii) Peak to peak value
(iii) Rms value
(iv) Periodic time
(v) Frequency
(vi) Phase angle
(12mks)
b) A coil of resistance 5Ω and inductance 120 mH in series with a $100 \mu \mathrm{~F}$ capacitor is connected to a $300 \mathrm{~V}, 50 \mathrm{HZ}$ supply. Determine the:
(i) Supply current
(ii) Phase difference between the supply voltage and the current
(iii) Voltage across the coil
(iv) Voltage across the capacitor

Question THREE

a) State the kirchoff's current law.
b) In the network of Fig 3(b), use Nodal analysis theorem to determine:
(i) The voltage at nodes 1 and 2
(ii) The current flowing along $\mathrm{j} 4 \Omega$ inductor
(iii) The current flowing along the 5Ω resistor
(iv) The magnitude of the active power dissipated along 2.5Ω resistor

Fig 3(b)
c) Determine the value of load resistor R_{l} shown in Fig 3(c) that gives maximum power dissipation hence determine the value of the power.

Fig 3(c)

Question FOUR

a) Define the following terms as used in filter network
(i) Filter
(ii) Characteristic impedance
b) With aid of a low pass T-section network, show that;

$$
\begin{equation*}
Z_{0 T}=\sqrt{\frac{L}{C}-\frac{\omega^{2} L^{2}}{4}} \tag{10mks}
\end{equation*}
$$

c) Calculate the characteristic impedance and cut-off frequency of T-section low pass filter having series arms of 30 mH and a shunt arm of $0.176 \mu \mathrm{~F}$ hence draw the network.
(8mks)

Question FIVE

a) Using Delta- star transformation in Fig 5(a), determine the:
(i) Equivalent circuit impedance across terminals A and B
(ii) Supply current I
(iii) Power dissipated in the 10Ω resistor

Fig 5(a)
b) Design a T-section band stop filter network to stop all frequencies between 400 HZ and 1 KHZ . The load impedance is 600Ω. Draw the network.

