

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MEDICAL ENGINEERING

SECOND YEAR SEMESTER ONE

EEE 4232: CIRCUIT AND NETWORK ANALYSIS

END OF SEMESTER EXAMINATION

SERIES: DEC 2016

TIME:2HOURS

DATE: 15th DEC 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt any three questions, all questions carry equal marks.

Do not write on the question paper.

Question ONE

- a) i) State Kirchoff's current and voltage laws.
 - ii) Fig 1(a) represents a resistive network. Use kirchoff's laws to determine the:
 - I. Current flowing in each branch.
 - II. Power dissipated in 3Ω resistor.

(12mks)

Fig 1(a).

b) In the network of Fig 1(b), use nodal analysis theorem to determine the voltage V_{xy} .

(8mks)

Fig 1(b)

Question TWO

- a) A capacitor is connected in series with a 40Ω resistor across a supply of frequency 60HZ. A Current of 3A flows and circuit impedance is 50Ω . Determine the:
 - (i) Value of capacitance
 - (ii) Supply voltage
 - (iii) Phase voltage between supply voltage and current
 - (iv) Potential difference across the resistor
 - (v) Potential difference across the capacitor

(10mks)

- b) A coil of negligible resistance and inductance 100mH is connected in series with a capacitor of 2μ F and a resistance of 10Ω across a 50V, variable frequency supply. Determine the:
 - (i) Resonant frequency
 - (ii) Current at resonant
 - (iii) Voltage across the coil and capacitance at resonance
 - (iv) Q-factor of the circuit.

(10mks)

Question THREE

- a) (i) State Thevenin's theorem
 - (ii) Fig 3(a) represents a wheatstone bridge network. Using Thevenin's theorem, determine the current flowing through the 32Ω resistor. (8mks)

Fig 3(a)

- b) In the network of Fig 3(b), use Delta-star transformation to determine:
 - (i) The current flowing in the $(0 + j10)\Omega$ impedance
 - (ii) The power dissipated on $(20 + j0)\Omega$ impedance (12mks)

Fig 3(b)

Question FOUR

- a) Design a T-section Band pass filter to pass all frequencies between 300HZ and 1KHZ.
 The load impedance is 600Ω. Draw the filter network. (10mks)
- b) With an aid of T-section low pass filter network, show that the cut-off frequency

$$f_c = \frac{1}{\pi\sqrt{LC}} \tag{10mks}$$

Question FIVE

a) The current in A.C circuit at any given time t seconds is given by:

I = $120 \sin(100\pi t + 0.36)$ Amperes. Determine:

- (i) Peak value
- (ii) Mean value
- (iii) Rms value
- (iv) Periodic time
- (v) Frequency and phase angle

(10mks)

- b) A circuit containing a resistor in series with a capacitor takes 100watts at a power factor of 0.5 from 100V, 60HZ supply. Determine;
 - (i) The current flowing in the circuit.
 - (ii) The phase angle
 - (iii) The resistance
 - (iv) The impedance
 - (v) The capacitance

(10mks)