TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 BACHELOR OF SCIENCE IN MEDICAL ENGINEERING SECOND YEAR SEMESTER ONE

EEE 4232: CIRCUIT AND NETWORK ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: DEC 2016
TIME:2HOURS
DATE: $\mathbf{1 5}^{\text {th }}$ DEC 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any three questions, all questions carry equal marks.
Do not write on the question paper.

Question ONE

a) i) State Kirchoff's current and voltage laws.
ii) Fig 1(a) represents a resistive network. Use kirchoff's laws to determine the:
I. Current flowing in each branch.
II. Power dissipated in 3Ω resistor.

Fig 1(a).
b) In the network of Fig 1(b), use nodal analysis theorem to determine the voltage $V_{x y}$.
(8mks)

Fig 1(b)

Question TWO

a) A capacitor is connected in series with a 40Ω resistor across a supply of frequency 60 HZ . A

Current of 3 A flows and circuit impedance is 50Ω. Determine the:
(i) Value of capacitance
(ii) Supply voltage
(iii) Phase voltage between supply voltage and current
(iv) Potential difference across the resistor
(v) Potential difference across the capacitor
b) A coil of negligible resistance and inductance 100 mH is connected in series with a capacitor of $2 \mu \mathrm{~F}$ and a resistance of 10Ω across a 50 V , variable frequency supply. Determine the:
(i) Resonant frequency
(ii) Current at resonant
(iii) Voltage across the coil and capacitance at resonance
(iv) Q -factor of the circuit.

Question THREE

a) (i) State Thevenin's theorem
(ii) Fig 3(a) represents a wheatstone bridge network. Using Thevenin's theorem, determine the current flowing through the 32Ω resistor.

Fig 3(a)
b) In the network of Fig 3(b), use Delta-star transformation to determine:
(i) The current flowing in the $(0+\mathrm{j} 10) \Omega$ impedance
(ii) The power dissipated on $(20+\mathrm{j} 0) \Omega$ impedance

Fig 3(b)

Question FOUR

a) Design a T-section Band pass filter to pass all frequencies between 300 HZ and 1 KHZ . The load impedance is 600Ω. Draw the filter network.
b) With an aid of T-section low pass filter network, show that the cut-off frequency

$$
\begin{equation*}
f_{c}=\frac{1}{\pi \sqrt{L C}} \tag{10mks}
\end{equation*}
$$

Question FIVE

a) The current in A.C circuit at any given time t seconds is given by:
$\mathrm{I}=120 \sin (100 \pi t+0.36)$ Amperes. Determine:
(i) Peak value
(ii) Mean value
(iii) Rms value
(iv) Periodic time
(v) Frequency and phase angle
b) A circuit containing a resistor in series with a capacitor takes 100 watts at a power factor of 0.5 from $100 \mathrm{~V}, 60 \mathrm{HZ}$ supply. Determine;
(i) The current flowing in the circuit.
(ii) The phase angle
(iii) The resistance
(iv) The impedance
(v) The capacitance
(10mks)

