TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY EXAMINATION 2016/2017

UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF ELECTRICAL AND ELECTRONIC ENGINEERING (BSEE)

EEE 2518 : DIGITAL SYSTEMS DESIGN I

```
TIME: 2 HOURS
```

SERIES: DECEMBER, 2016

INSTRUCTIONS TO CANDIDATES

1. You are required to have the following for this examination;

- Answer Booklet
- A non Programmable Calculator

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions carry equal marks.
5. This paper consists of THREE printed pages.

QUESTION ONE

a) Explain the general technique to design a divide by N ripple counter, assuming J-K flipflops with preset available.
b) With aid of a transition table, design a modulo-5 D flip-flop based synchronous counter to repetitively count in the sequence $1,3,6,2,4,1 \ldots \ldots$. The unused states will assume a value represented by 2 . Other than the flip-flop IC packages, use optimal IC packages.
(15 marks)

QUESTION TWO

a) Develop a full SUBTRACTOR using NAND gates only and explain its operation.
(10 marks)
b) Using the tabular method minimization technique, obtain a minimum SOP expression for the function $F(A, B, C, D, E)=\sum_{m}=(2,5,6,8,9,10,11,12,17,18,19,20,21,22,24$, $26,27,29,30,31)$
(10 marks)

QUESTION THREE

a) Explain the functions of the following digital devices:
(i) Logic analyser
(ii) Binary comparator
(iii) Multiplexer
(6 marks)
b) A certain building has a central heating system controlled by five thermostats in various locations. Each thermostat has a logic $\mathbf{1}$ output for too low a temperature, and logic $\mathbf{0}$ for too high temperature (thermostat cut off). Design NOR-to-NOR gate combinational networks to implement this specification.
c) Obtain realizable logic diagram for a 4-to-2 priority encoder for the following available signals $\sim \mathrm{F}_{1}[\mathrm{NL}], \mathrm{F}_{0}, \sim \mathrm{I}_{2}[\mathrm{NL}], \mathrm{I}_{3}, \mathrm{I}_{1}, \mathrm{I}_{0}$. Also implement it using minimum number of one type of gates.
(8 marks)

QUESTION FOUR

a) (i) State the design procedures for a sequential logic circuit.
(ii) Using a $4-$ to -1 multiplexer, implement the function

$$
\begin{equation*}
f(A, B, C, D)=\sum_{m}(0,2,4,5,6,7,8,10,11,12,14) \tag{8marks}
\end{equation*}
$$

b) Given the state diagram of Figure Q4b, generate the state table and design a sequential circuit using T-flip flops.
(12 marks)

Figure Q4b

QUESTION FIVE

a) Design a PLA device that implements a 3-bit odd parity generation.
b) Design a logic circuit that has an enable input ' E ' such that it converts a 3-bit binary value to its equivalent 3-bit gray code when $\mathrm{E}=0$ and when $\mathrm{E}=1$, it converts a 3-bit gray code to its binary equivalent. Implement using appropriate decoder and encoder with minimum external IC package.
(12 marks)

