

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION 2016/2017

UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF ELECTRICAL AND ELECTRONIC ENGINEERING (BSEE)

EEE 2518 : DIGITAL SYSTEMS DESIGN I

TIME: 2 HOURS SERIES: DECEMBER, 2016

INSTRUCTIONS TO CANDIDATES

- 1. You are required to have the following for this examination;
 - Answer Booklet
 - A non Programmable Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Answer **ANY THREE** Questions.
- 4. All Questions carry equal marks.
- 5. This paper consists of THREE printed pages.

QUESTION ONE

- a) Explain the general technique to design a divide by N ripple counter, assuming J-K flip-flops with preset available. (5 marks)
- b) With aid of a transition table, design a modulo-5 D flip-flop based synchronous counter to repetitively count in the sequence 1, 3, 6, 2, 4, 1...... The unused states will assume a value represented by 2. Other than the flip-flop IC packages, use optimal IC packages.

(15 marks)

QUESTION TWO

a) Develop a full SUBTRACTOR using NAND gates only and explain its operation.

(10 marks)

b) Using the tabular method minimization technique, obtain a minimum SOP expression for the function F (A, B, C, D, E) = \sum_{m} = (2, 5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29, 30, 31) (10 marks)

QUESTION THREE

- a) Explain the functions of the following digital devices:
 - (i) Logic analyser
 - (ii) Binary comparator
 - (iii) Multiplexer (6 marks)
- b) A certain building has a central heating system controlled by five thermostats in various locations. Each thermostat has a logic 1 output for too low a temperature, and logic 0 for too high temperature (thermostat cut off). Design NOR-to-NOR gate combinational networks to implement this specification.
- c) Obtain realizable logic diagram for a 4-to-2 priority encoder for the following available signals ~F₁[NL], F₀, ~I₂[NL], I₃, I₁, I₀. Also implement it using minimum number of one type of gates. (8 marks)

QUESTION FOUR

- a) (i) State the design procedures for a sequential logic circuit.
 - (ii) Using a 4 to 1 multiplexer, implement the function $f(A, B, C, D) = \sum_{m} (0, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14).$ (8 marks)
- b) Given the state diagram of Figure Q4b, generate the state table and design a sequential circuit using T-flip flops. (12 marks)

Figure Q4b

QUESTION FIVE

- a) Design a PLA device that implements a 3-bit odd parity generation. (8 marks)
- b) Design a logic circuit that has an enable input 'E' such that it converts a 3-bit binary value to its equivalent 3-bit gray code when E = 0 and when E = 1, it converts a 3-bit gray code to its binary equivalent. Implement using appropriate decoder and encoder with minimum external IC package. (12 marks)