

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

EEE 2517

ELECTROACOUSTICS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination -Answer Booklet, non-programmable calculator, examination pass and student ID This paper consists of **five** Questions; Question ONE is compulsory. In addition, attempt any Other TWO Questions.

Useful constants and table

Threshold pressure for human hearing, $=20\mu pa$

Air density, $\rho = 1.1 kg/m^3$

Reference density, $\rho_0 = 1.18$

Velocity of sound, v=343m/sReference sound intensity, $I_0=1.0*10^{-12}w/m^2$ y = 1.4

$$P_0 = 10^5$$

•					
OSHA noise HCA 1983 - present					
Exposure time (hrs)	PEL, dB(A)				
32	80				
16	85				
8	90				
4	95				
2	100				
1	105				
0.5	110				

Do not write on the question paper.

© 2016-Technical University of Mombasa -JFO

Qı

ues	tion of	ne (30 mai	rks) (Compu	lsory)					
a.	Define	e the followi	ng terms as use	d in acoustics	3.				(4mks)
	i.	Decibel							
	ii.	Sound pres	ssure level						
b.	Briefly	y discuss two	o main merits of	f logarithmic	units.				(2mks)
c.									
	i.	Define a m	icrophone.						
	ii.	Give	two	principle	;	purposes	of	micro	phones.
		(3mks)							
d.									
	i.	Give two	main disadva	ntages of h	norn loud	ispeakers a	as compared	with direct	radiator
		loudspeake	ers.						
	ii.	How can	the radiating	efficiency of	of a dire	ct-radiator	loudspeaker	be increased	at low
		frequencies	s?						
		(3mks)							

- e. Determine the sound pressure for a plane progressive one dimensional sound wave with the particle $\omega = 500$ rads/s displacement. $\Delta x = 1 cm$. velocity $0.5 \mathrm{cm/s}$, and of а (3mks)
- f. The y-displacement of a transverse wave travelling in the negative x-direction is $y=8.6\cos(4.8x+60t)$, where t is measured in seconds, x is measured in meters and y is measured in centimeters. Determine the following: (4mks)
 - i. Amplitude
 - Frequency ii.
 - Wavelength and iii.
 - Speed of the wave iv.
- g. In the deep ocean, a water wave with wavelength 41.2m travels at a speed of 7.5m/s. suppose that a small boat is at the crest of this wave, 0.41m above the equilibrium level. Determine the vertical displacement of the boat above or below the equilibrium level 3.4 seconds later. Note; the boat simply moves down. up and (8mks)
- h. A worker in a machine shop is exposed to 95dBA for 2hrs, 69-78dBA for four hours (including a 15min break and 45min lunch), and 90dBA for three additional hours. Calculate the percentage dosage. (3mks)

Table $QI(h)$						
Worker's activity	Time	Measured sound level				
Milling machine	6.00-8.00am	95dBA				
Break room	8.00-8.15am	69dBA				
Parts department	8.15-11.15am	78dBA				
Lunch	11.15-12.00pm	69dBA				
Milling assist	12.00-3.00pm	90dBA				

Question two (20 marks)

- a. Define an electrodynamic loudspeaker
- b. Give advantages of radiator loudspeaker. two direct type (2mks)

(1mk)

- c. Give two disadvantages of a small diaphragm in a loudspeaker. (2mks)
- d. Define the term SWR as used in 'Electroacoustics'. (2mks)
- e. The displayed noise, p_r , of a power meter is -80dBm. When a signal p, is applied, the displayed value increases to p_{tot} =-60dBm. Determine the power of the signal p in dBm? (3mks)
- f. Given the one-dimensional wave equation as $\frac{\delta^2 p}{\delta x^2} = \frac{1}{c^2} \frac{\delta^2 p}{\delta t^2}$
 - i. Give the general solution of this wave equation (2mks)
 - ii. Highlight any two observations from (i) above

g. Consider the Helmholtz resonator shown in figure 4(g). A constant force generator G produces a series of tones, among which is one that is not wanted. These tones actuate a microphone M whose acoustic impedance is 250 N.s/m⁵. If the tube T has a cross-sectional arc of $10cm^2$, $L_1=L_2=10cm$, $L_3=2cm$, $V=500cm^2$, and the cross-sectional area of $L_3=4cm^2$, what frequency is eliminated from the system? (6mks)

Question three (20 marks)

- a. Explain the functions of the following parts of the human ear
 - i. Eardrum
 - ii. Cochlea
 - iii. Ossicular chain
- b. A point source emits 60mW of sound isotropically. A small microphone intercepts the sound in an area of 150mm², 400cm from the source. Calculate; (6mks)
 - i. The sound intensity at this point
 - ii. The power intercepted by the microphone in mW.
- c. An eardrum that has an area of 2.5mm² receives sound energy at normal incidence at a rate of $6.3*10^{-8}$ j/s. calculate;

(5mks)

- i. The intensity of the sound waves at the eardrum in one second
- ii. The intensity level of sound of this intensity.
- d. There are two music systems, A and B, in a room. A person standing in between the two music systems is exposed to sound intensity level of 70dB when system A is on and B switched off. However, when B is on and A switched off, the person is exposed to 68dB sound intensity level. Calculate the intensity

(2mks)

(3mks)

level experience by this person when both A and B are switched on. (6mks)

Question four (20 marks)

- a. Differentiate between echo and reverberation.
- b. Differentiate between absorptive and reactive acoustic filters.
- c. Given $I_1=1.5*10^{-12}$ w/m² at a radius of one meter, determine; (5mks)
 - i. The sound intensity of a whisper at a distance of 3m
 - ii. The corresponding sound intensity level
- d. The intensity of EM waves from the sun is 1.5kW/m² just above the earth's atmosphere. 85% of this reaches the surface at noon on a clear sunny day. Suppose you model your back as 35cm by 55cm rectangle. Determine the solar energy incident on your back for two hours. (5mks)
- e. It is desired to resonate the cavity in front of the diaphragm of a call loudspeaker, such as that found in a cellphone, to 3kHz using an array of laser drilled sound outlet holes. The cavity has a volume of 0.4cm³ and a wall thickness of 1mm. determine the size and number of holes needed, assuming a QA=1.5 and a ratio of hole diameter to on-center spacing of 0.5. (6mks)

Question five (20 marks)

- a.
- i. Explain what you understand by sound power level
- ii. Give two limitations of sound power level. (4mks)
- b. Starting from basic principles, show that the difference between two sound intensity levels when $I_2=3I_1$ is 4.77dB.
 - (5mks)
- c. Determine the power flow in a freely travelling wave at a fixed point as a function of time, given that pressure, p(t)=k sin ωt . (3mks)
- d. Design a single section T low-pass filter with a cut-off frequency of 100Hz and a Q value of $\frac{1}{\sqrt{2}}$ for

critical damping. The filter is driven by a piston at the entrance on the left and terminated with an impedance of $R_0=10^3$ N.s/m⁵ at the exit on the right. (8mks)

(2mks)

(2mks)