

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4404 : POLYMER TECHNOLOGY

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

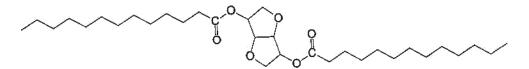
DATE: 11TH MAY 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question ONE and any other TWO. **Do not write on the question paper.**

Question ONE


- a) Suggest reasons for the following observations
 - i) Polydisperse polymers have average molecular weights
 - ii) For a substance to act as a condensation monomer it must have at least two reactive sites. (4marks)
- b) Explain the following terms
 - i) Amorphous polymer
 - ii) Atacticity
 - iii) Copolymer
- c) Poly (styrene) is represented by the formula

(6marks)

	$ \begin{array}{c c} H & H \\ \hline \\ C & C \\ \hline \\ H & Ph \end{array} $			
	i) Draw molecular structures for tetramers (n=4) of the atacti isotactic, and syndiotactic forms of polystyrene.	с,		
		(6marks)		
	ii) Draw the structure and name the monomer that forms poly	ystyrene		
		(2 marks)		
d)	High-density polyethylene (HDPE) has a higher melting point and low- density polyethylene (LDPE). Explain.	l more rigid than		
		(4marks)		
e)	Describe the kinetics of the termination process by coupling in free radical polymerization.			
		(4marks)		
f)	List any four types of components in rubber compounding			
		(4marks)		

Question TWO

a) Use isosorbide diester, whose structure is given below to answer questions that follow

Volume of molecule (V) = 355.80 cm^3 $P(\text{density}) = 1.51 \text{ g/cm}^3$ Assume the following molar attraction constants (G) ($J^{1/2} \text{ cm}^{3/2} \text{ mol}^{-1}$)

-CH ₃	420
-CH ₂ -	280
-COO-	511
-CH-	140
-O-	137

i) Estimate the solubility parameter of isosorbide diester (6 marks)

ii) Suggest the derived units of solubility parameter δ . (2 marks)

- b) i) Explain the differential scanning calorimetric (DSC) method for determination of Tg of polymers. (3 marks)
 - ii) Sketch a DSC plot for an amorphous polymer and label Tg on this curve. (3 marks)
- c) i) Calculate the weight average molecular weight of a polymer containing 9 moles of molecular weight 30,000 and 5 moles of molecular weight 50,000. (3 marks)

iii) work out the polydispersity index for the polymer in (i) above

(3 marks)

Question THREE

a)	Describ	e the	determination	of	polymer	molecular	weight	distribution	by	gel
	permeation chromatography.							(6 marks)		
b)	i)	What	is theta state?					(2 mart	(s)	

ii) Give two parameters that constitute a theta state.

c)	Discuss the thermodynamics of dissolution of a polymer	(2 marks) (5 marks)			
d)	Give three advantages and two disadvantages of emulsion polymerisation method				
Question FOUR (5marks)					
a)	i) Explain the term birefringenceii) What is the significance of birefringence in fibre characteria	(2 marks) isation?			
b)	Describe melt spinning of polymeric fibres	(3marks)			
c)	With the help of a tree diagram show the classification of natural an fibres	(6marks) nd man made (6 marks)			

d) Give three applications of polyester fibres

Question FIVE

a)	i)	Derive the expression for overall rate of polymerization a conversion in step growth polymerization.	s a function of 6marks)		
	ii)	Sate two ways of controlling molecular weight in step group polymerisation reactions	owth (2marks)		
b)	i)	Explain injection molding process.	(5 marks)		
	ii)	Enlist any three industrially important products prepared l	by this process. (3 marks)		
c)	compounding.				
	ii)	Explain their role in the production cost of moulded goods.			

(4 marks)

(3marks)