

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES PURE AND APPLIED SCIENCES DEPARTMENT UNIVERSITY EXAMINATION FOR BTAC 13S AND BTAC 14S₂

ACH 4403: ORGANIC SYNTHESIS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2 HOURS

DATE:

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of five questions. Answer question one and any other two.

Do not write on the question paper.

Question ONE

- a. Explain four the major considerations when planning an organic synthesis (6marks)
- b. Provide the use of the following reagents commonly used in organic synthesis
 - i) LiAlH₄
- ii) BMPA
- iii) TsOH

(6marks)

c. i) Using simple illustrations differentiate between linear and convergent synthesis

(4marks)

ii) Convergent synthesis is preferred in most organic synthesis. Explain

(2marks)

- d. Write the sequence of reactions for the synthesis of 2-bromobutane from a named
 - i) alkene
 - ii) alkyne

(6marks)

e. i) Explain the term FGI as used in retrosynthesis

(2marks)

ii) Carry out a retrosynthetic analysis of ethyl 4-acetomidobenzoate **I** a derivative of benzocaine a known anaesthetic by FGI (4marks)

Question TWO

a. i) Explain the term protecting group

(2marks)

ii) Provide the synthetic route for the following transformation

- b. Explain the following terms
 - i) Synthons
 - ii) Synthetic equivalents

(4marks)

(6marks)

c. Compound **II** below is synthesized by Michael addition. Suggest the mechanism for the reaction. (3mks)

$$H$$
 $+$
 Et_3N
 H^+ , t-BuOH
 II

d. Suggest a synthesis route for 2-hexanone from 1-pentyne and an alkyl bromide in presence of sodium amide. (5mks)

Question THREE

a. Outline four main reasons for carrying out laboratory synthesis of an organic compound

(4mks)

b. Using two general examples explain why β -ketoesters are important starting materials in organic synthesis of alkylated ketoesters and ketones.

(7mks)

c. With the help of five and six membered locked diene and ethene explain using a simple mechanism the formation of a bicyclic organic product from each of the cyclic dienes.

(5mks)

d. How can the yield of a Diels-Alders reaction be increased

(4mks)

Question FOUR

a. State and explain any two general considerations essential in choosing protecting groups in organic synthesis

(4marks)

b. Using the necessary reagents show how a protecting group can be used in the synthesis of compound **IV** from **III** below (4marks)

c. Provide the structures of the major organic products A-D in the following reactions.

i) Br
$$A \xrightarrow{Mg, dry \text{ ether}} A \xrightarrow{1. \text{ HCHO}} B$$

$$+ \text{ NH}_2\text{NH}_2 \longrightarrow C \xrightarrow{\text{NaOH}} D$$

ii)

(4marks)

d. Using curly arrows suggest plausible mechanisms for the reactions in (c) above.

(8mks)

Question FIVE

- a. Explain the following terms
 - i) Clemensen's reduction
 - ii) Wolff-Kishner reduction

(4marks)

b. i) Using an equation show how [18] crown ether can facilitate dissolution of KMnO₄ in benzene.

Draw the structure of compound E and name the type of reaction. ii)

(3marks)

(3marks)

Explain the term Pinacol rearrangement i) (2mks) c.

Draw the structure and name the organic product F below ii)

(3mks)

Provide the mechanism for the reaction in (ii) above iii)

(5marks)