

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2250: ENGINEERING MATHEMATICS III

END OF SEMESTER EXAMINATION

SERIES:AUGUST2017

TIME:2HOURS

DATE:11Sep2017

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of FIVE questions.

Attemptquestion ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question ONE (COMPULSORY)

- (a) Calculate the product [A][B][C] by
 - i). finding [T] = [A][B] and then [T][C], and
 - ii). finding [T] = [B][C] and then [A][T] where:

$$[A] = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad [B] = \begin{bmatrix} 6 & 5 \\ 4 & 3 \\ 2 & 1 \end{bmatrix}, \qquad [C] = \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$$

- iii). Calculate [A][B] of the two matrices given above and then take the transpose of product matrix. Is it equal to the product of $[B]^T[A]^T$? (18 marks)
- (b) Prove that the triangle formed by the points (-3; 5; 6); (-2; 7; 9) and (2; 1; 7) is a 30° ; 60° ; 90° triangle. (12 marks)

Question TWO

- (a) Define the following terms as used in matrices:
 - i). Null Matrix
 - ii). Transpose Matrix
 - iii). Identity matrix
 - iv). Singular matrix

(4 marks)

(b) For the system of equations

$$x_1 + 2x_2 + 3x_3 = 14$$

$$x_1 + 3x_2 + 4x_3 = 19$$

$$x_1 + 4x_2 + 3x_3 = 18$$

compute the unknowns x_1 , x_2 and x_3 using the inverse matrix method. (16 marks)

Question THREE

(a) Use Cramer's rule to solve the equations:

$$3x + 2y - z = 0$$

$$2x - y + z = 1$$
$$x - y + 2z = -1$$

(b) If
$$p = 2i + j - k$$
 and $q = i - 3j + 2k$ determine:

- (i) $p \cdot q$ (ii) p + q (iii) |p + q|
- (iv) |p| + |q|
- (8 marks)

(12 marks)

Question FOUR

(a) If
$$\mathbf{p} = 4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
, $\mathbf{q} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{r} = \mathbf{i} - 2\mathbf{k}$ find

i).
$$(p-2q) \times r$$

ii).
$$\mathbf{p} \times (2\mathbf{r} \times 3\mathbf{q})$$

(12 marks)

(b) Find the direction cosines of 3i + 2j + k hence show that $cos^2\alpha + cos^2\beta + cos^2\gamma = 1$ (8 marks)

Question FIVE

(a) Evaluate, in polar form $2\angle 30^{\circ}+5\angle -45^{\circ}-4\angle 120^{\circ}$

(8 marks)

(b) Given $Z_1=2+j4$ and $Z_2=3-j$ determine

i).
$$Z_1+Z_2$$
,

ii).
$$Z_1 - Z_2$$
,

iii). $Z_2 - Z_1$ and show the results on an Argand diagram

(12 marks)