TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING
UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MEDICAL ENGINEERING
AMA2250: ENGINEERING MATHEMATICS III
END OF SEMESTER EXAMINATION
SERIES:AUGUST2017
TIME:2HOURS
DATE:11Sep2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions.
Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE (COMPULSORY)

(a) Calculate the product $[\mathrm{A}][\mathrm{B}][\mathrm{C}]$ by
i). finding $[T]=[A][B]$ and then $[T][C]$, and
ii). finding $[\mathrm{T}]=[\mathrm{B}][\mathrm{C}]$ and then $[\mathrm{A}][\mathrm{T}]$ where:

$$
[A]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad[B]=\left[\begin{array}{ll}
6 & 5 \\
4 & 3 \\
2 & 1
\end{array}\right], \quad[C]=\left[\begin{array}{ll}
-1 & -2 \\
-3 & -4
\end{array}\right]
$$

iii). Calculate $[\mathrm{A}][\mathrm{B}]$ of the two matrices given above and then take the transpose of product matrix.

Is it equal to the product of $[\mathrm{B}]^{\mathrm{T}}[\mathrm{A}]^{\mathrm{T}}$?
(18 marks)
(b) Prove that the triangle formed by the points $(-3 ; 5 ; 6) ;(-2 ; 7 ; 9)$ and $(2 ; 1 ; 7)$ is a $30^{\circ} ; 60^{\circ} ; 90^{\circ}$ triangle.
(12 marks)

Question TWO

(a) Define the following terms as used in matrices:
i). Null Matrix
ii). Transpose Matrix
iii). Identity matrix
iv). Singular matrix
(b) For the system of equations
$x_{1}+2 x_{2}+3 x_{3}=14$
$x_{1}+3 x_{2}+4 x_{3}=19$
$x_{1}+4 x_{2}+3 x_{3}=18$
compute the unknowns x_{1}, x_{2} and x_{3} using the inverse matrix method. (16 marks)

Question THREE

(a) Use Cramer's rule to solve the equations:

$$
\begin{align*}
& 3 x+2 y-z=0 \\
& 2 x-y+z=1 \\
& x-y+2 z=-1 \tag{12marks}
\end{align*}
$$

(b) If $p=2 i+j-k$ and $q=i-3 j+2 k$ determine:
(i) $p \bullet q$
(ii) $p+q$
(iii) $|p+q|$
(iv) $|p|+|q|$
(8 marks)

Question FOUR

(a) If $\boldsymbol{p}=4 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}, \boldsymbol{q}=3 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{r}=\boldsymbol{i}-2 \boldsymbol{k}$ find
i). $(\boldsymbol{p}-2 \boldsymbol{q}) \times \boldsymbol{r}$
ii). $\boldsymbol{p} \times(2 \boldsymbol{r} \times 3 \boldsymbol{q})$
(12 marks)
(b) Find the direction cosines of $3 i+2 j+k$ hence show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ (8 marks)

Question FIVE

(a) Evaluate, in polar form $2 \angle 30^{\circ}+5 \angle-45^{\circ}-4 \angle 120^{\circ}$
(b) Given $Z_{1}=2+j 4$ and $Z_{2}=3-j$ determine
i). $Z_{1}+Z_{2}$,
ii). $Z_{1}-Z_{2}$,
iii). $Z_{2}-Z_{1}$ and show the results on an Argand diagram

