

TECHNICAL UNIVERSITY

OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND CIVIL ENGINEERING

YEAR III SEMESTER II

AMA 2251: ENGINEERING MATHEMATICS IV END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2016

TIME: 2HOURS

DATE: Pick Date December 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID Mathematical table, calculator This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions

Do not write on the question paper.

Question one (compulsory) (30MKS)

Question One (30 Marks)

a)

- i) Determine $L\{e^{-2t} \sin 3t\}$ using Laplace transform tables (2 marks)
- ii) Determine the Laplace transform of $f(x) = t^2$ from first principles

(6 marks)

iii) Determine
$$L^{-1}\left\{\frac{4s-3}{s^2-4s-5}\right\}$$
 (4 marks)

b)

- i) Given that y = 1 when $x = 2\frac{1}{6}$, determine the particular solution of $(y^2 1)\frac{dy}{dx} = 3y$ (5 Marks)
- ii) Use the integrating factor to solve $\frac{dy}{d\theta} = \sec \theta + y \tan \theta$ given the boundary conditions y = 1 when $\theta = 0$ (6 Marks)
- c) Determine the Fourier series expansion of the periodic function of period 1

$$f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x < 0 \\ \frac{1}{2} - x, & 0 < x < \frac{1}{2} \end{cases}$$

(7 Marks)

Question Two (20 Marks)

a) Given the function f(x) = x, $0 < x < 2\pi$, determine the Fourier series representing the function f(x)

(10 *Marks*)

b) Determine the Fourier series expansion of the periodic function of period 1, given the function

$$f(x) = \begin{cases} -1 & for & -\pi < x < \frac{-\pi}{2} \\ 0 & for & \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 1 & for & \frac{\pi}{2} < x < \pi \end{cases}$$

(10 Marks)

Question Three (20 Marks)

a) A first order differential equation involving current i in a series R-L circuit is given by: $\frac{di}{dt} + 5i = \frac{E}{2}$ and i = 0 and time t = 0. Use Laplace transforms to solve for i when $E = 50 \sin 5t$ (10 marks)

b) Using Laplace transforms solve the following second order differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x}\sin x, \quad \text{where } y(0) = 0, \ y'(0) = 1$$
 (10 Marks)

Question Four (20 Marks)

- a) Given that $7x(x-y)dy = 2(x^2 + 6xy 5y^2)dx$ is homogeneous in x and y, solve the differential equation taking x = 1 when y = 0 (12 Marks)
- b) The charge q in an electric circuit at time t satisfies the equation $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E, \text{ where } L, R, C \text{ and } E \text{ are constants. Solve the equation given}$ $L = 2H, C = 200 \times 10^{-6} F \text{ and } E = 250V \text{ when } R = 200\Omega \tag{8 Marks}$

Question Five (20 Marks)

a) Show the following

$$\ell^{3t} = \frac{1}{s-3}$$
, using the definition of Laplace transform (3 marks)

b) Determine $L^{-1} \left\{ \frac{7s+13}{s(s^2+4s+13)} \right\}$

(9 marks)

c) Determine the general solution of $9\frac{d^2y}{dx^2} - 24\frac{dy}{dx} + 16y = 0$, then its particular solution given that x = 0, $y = \frac{dy}{dx} = 3$ (8 Marks)

Table of Laplace Transforms

Table of Laplace Transforms					
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) - \mathcal{L}\{f(t)\}$
1.	1	1/3	2.	e ^{nt}	$\frac{1}{s-a}$
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4,	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	√ F	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1) \sqrt{n}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	cos(at)	$\frac{s}{s^2 + a^2}$
9.	$t \sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	toos(at)	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$
11.	$\sin(at)$ – $at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^2-a^2)}{(s^2+a^2)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$
19.	$e^{\omega}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$e^{\omega}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
21.	$e^{\omega} \sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$	22.	e" cosh(bt)	$\frac{s-a}{(s-a)^2-b^2}$
23.	t'e", n=1,2,3,	$\frac{n!}{(s-a)^{n+1}}$		f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_{\nu}(t) = u(t-c)$ Heaviside Function	e-**	26.	$\delta(t=c)$ Dirac Delta Function	e ^{-er}
27.	$u_e(t) f(t-c)$	$e^{-ss}F(s)$	28.		$e^{-\omega} \mathcal{L}\{g(t+c)\}$
29.	$e^{\epsilon t} f(t)$	F(s-c)	30.	$t^*f(t), n=1,2,3,$	$(-1)^n F^{(n)}(s)$
	$\frac{1}{t}f(t)$	$\int_{a}^{\infty} F(u) du$		$\int_{0}^{t} f(v) dv$	$\frac{F(s)}{s}$
33.	$\int_{0}^{t}f\left(t-\tau\right) g\left(\tau\right) d\tau$	F(s)G(s)	34.	f(t+T) - f(t)	$\frac{\int_{0}^{T} e^{-d} f(t) dt}{1 - e^{-dT}}$
35.	$f^{\prime\prime}(t)$	sF(s)-f(0)	36.	$f^*(t)$	$s^2F(s)-sf'(0)-f''(0)$
37.	$f^{(n)}(t)$			$0) - s^{r-2} f'(0) \cdots - s f^{(r-2)}$	$f^{(n-1)}(0) = f^{(n-1)}(0)$