TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING
 AMA2251:ENGINEERING MATHEMATICS IV
 END OF SEMESTER EXAMINATION

SERIES:APRIL2016
TIME:2HOURS
DATE:9May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

a) The current flowing in an electric circuit is given by the $R i+L \frac{d i}{d t}=E$ where R, L and E are constants. Using Laplace transform, solve for current given $t=i=0$
b) Solve the following differential equations
i. $\quad 2 y(1-x)=-(x+x y) \frac{d y}{d x}$
ii. $\frac{d y}{d x}=\frac{3}{x}-\frac{x}{y}$
(10 marks)
c) Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-4 y=3 \sin x$ given that $x=y=y^{\prime}=0$
(10 marks)

Question TWO

a) Determine the inverse Laplace transform of the following
i. $\frac{3 s^{2}+16 s+15}{(s+3)^{3}}$
ii. $\frac{3+6 s+4 s^{2}-2 s^{3}}{s^{2}\left(s^{2}+3\right)}$
b) Solve the following simultaneous equations using Laplace transform taking $t=x=y=0$

$$
\begin{aligned}
& \frac{d y}{d t}+x=1 \\
& \frac{d x}{d t}-y+4 e^{t}=0
\end{aligned}
$$

(10 marks)

Question THREE

a) An inductor of 2 H and a resistor of 200Ω are connected in series to an emf of $100 \sin 150 \mathrm{t}$. Determine the current in the circuit at any given time taking $\mathrm{t}=\mathrm{i}=0$
b) Solve the following equation using Laplace transform $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=3 e^{x} \cos 2 x$ taking $y(0)=2$ (10 marks)

Question FOUR

Solve
a) $\frac{x+y}{y-x}=\frac{d y}{d x}$
b) $\left(y^{2}+2\right) \frac{d y}{d x}=5 y$
c) $\frac{d y}{d x}+x=2 y$
d) $\left(y^{2} e^{x y^{2}}+4 x^{3}\right) d x+\left(2 x y e^{x y^{2}}-3 y^{2}\right) d y=0$
(10 marks)

Question FIVE

a) Solve $5 \frac{d^{2} y}{d x^{2}}+9 \frac{d y}{d x}-2 y=3 e^{x}$ (10 marks)
b) Use Laplace transforms to solve $\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+8 x=0$ taking $x(0)=4$ and $x^{\prime}(0)=8$ (10 marks)

