TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MEDICAL ENGINEERING
AMA2251:ENGINEERING MATHEMATICS IV
END OF SEMESTER EXAMINATION
SERIES:DECEMBER2016
TIME:2HOURS
DATE:9Dec2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) A constant emf of 20 V is applied across a circuit of resistance 600Ω, inductance 20 H , and capacitance of $250 \mu \mathrm{~F}$.
i) derive an equation for charge across the circuit
ii) given that $q=0, i=0$ use Laplace transforms to solve for charge hence deduce the current I
(b) Solve the following differential equations
i) $x^{2} d y+y(x+y) d x=0$
ii) $\frac{d y}{d x}=\frac{y^{2}(1+x)}{x^{2}(y-1)}$
(c) Solve the following differential equation

$$
2 \frac{d x^{2}}{d t^{2}}+3 \frac{d x}{d t}-5 x=6 \sin 2 t
$$

Question TWO

(a) Use Laplace transform to solve the following differential equation $\frac{d x^{2}}{d t^{2}}+\frac{d x}{d t}-2 x=$ $5 e^{-t} \sin 2 t$
Given that $\mathrm{x}=1 \frac{d x}{d t}=t=0$
(10 marks)
(b) The current in an electric circuit containing resistance and inductance is given by the equation, $E-L \frac{d i}{d t}=R i$ Solve for i using separating the variables method given that $t=0$ and $i=0$

Question THREE

The differential equation for a circuit is given by $\frac{d i}{d t}+\frac{1}{L C} \int i d t=\frac{E_{O}}{L} \cos \omega t$
(a) express the above equation as a second order differential equation in terms of q
(b) given that $q=q_{o}, t=0$ and use Laplace transforms to determine q as a function of time
(c) taking $n=2 \omega$, use the results in (b) above to deduce for current as a function of t and ω only

Question FOUR

(a) A voltage $E e^{-a t}$ is applied at $\mathrm{t}=0$ to a circuit containing inductance and resistance. Determine the expression for current at any given time marks)
(b) Determine the inverse Laplace transform for the following equation.
(i) $\frac{3 s^{3}+s^{2}+12 s+2}{(s-3)(s+1)^{3}}$
(ii) $\frac{7 s+13}{s\left(s^{2}+4 s+13\right)}$

Question FIVE

(a) Use Laplace transform to solve $2 \frac{d^{2} t}{d t^{2}}+5 \frac{d x}{d t}-3 x=0$ given that $\mathrm{t}=0, \mathrm{x}=4$ and $\frac{d x}{d t}=9$
(b) Given the differential equation $\frac{d^{2} v}{d t^{2}}=\omega^{2} v$ where ω is a constant, show that the solution can be expressed as $v=7 \cosh \omega t+3 \sinh \omega t$ taking $\mathrm{t}=0, \mathrm{v}=7$ and $\frac{d v}{d t}=3 \omega$. (10 marks)

