

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2251: ENGINEERING MATHEMATICS IV

END OF SEMESTER EXAMINATION

SERIES:DECEMBER2016

TIME:2HOURS

DATE:9Dec2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

- (a) A constant emf of 20V is applied across a circuit of resistance 600Ω , inductance 20H, and capacitance of $250\mu F$.
 - i) derive an equation for charge across the circuit

0

ii) given that q = 0, i = 0 use Laplace transforms to solve for charge hence deduce the current I

(10 marks)

(b) Solve the following differential equations

i)
$$x^2 dy + y(x+y)dx =$$

ii) $\frac{dy}{dx} = \frac{y^2(1+x)}{x^2(y-1)}$

(10 marks)

(c) Solve the following differential equation

$$2\frac{dx^2}{dt^2} + 3\frac{dx}{dt} - 5x = 6\sin 2t$$

Question TWO

(a) Use Laplace transform to solve the following differential equation $\frac{dx^2}{dt^2} + \frac{dx}{dt} - 2x = 5e^{-t}\sin 2t$

Given that $x=1 \frac{dx}{dt} = t = 0$ (10 marks) (b) The current in an electric circuit containing resistance and inductance is given by the

equation, $E - L\frac{di}{dt} = Ri$ Solve for i using separating the variables method given that t = 0and i = 0

(10 marks)

Question THREE

The differential equation for a circuit is given by $\frac{di}{dt} + \frac{1}{LC} \int i dt = \frac{E_o}{L} \cos \omega t$

- (a) express the above equation as a second order differential equation in terms of q
- (b) given that $q = q_0$, t = 0 and use Laplace transforms to determine q as a function of time
- (c) taking $n = 2\omega$, use the results in (b) above to deduce for current as a function of t and ω only

(20 marks)

Question FOUR

- (a) A voltage Ee^{-at} is applied at t=0 to a circuit containing inductance and resistance. Determine the expression for current at any given time (10 marks)
- (b) Determine the inverse Laplace transform for the following equation.

(i)
$$\frac{3s^3+s^2+12s+2}{(s-3)(s+1)^3}$$

(ii) $\frac{7s+13}{s(s^2+4s+13)}$

(10 marks)

©Technical University of Mombasa

Question FIVE

- (a) Use Laplace transform to solve $2\frac{d^2t}{dt^2} + 5\frac{dx}{dt} 3x = 0$ given that t=0, x=4 and $\frac{dx}{dt} = 9$
- (b) Given the differential equation $\frac{d^2v}{dt^2} = \omega^2 v$ where ω is a constant, show that the solution can be expressed as $v = 7cosh\omega t + 3sinh\omega t$ taking t=0, v=7 and $\frac{dv}{dt} = 3\omega$. (10 marks)