TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND CIVIL ENGINEERING
YEAR III SEMESTER II
AMA 2351:ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2016
TIME: 2HOURS
DATE: Pick Date December 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions
Do not write on the question paper.

Question one (compulsory) (30MKS)
a) Given $f(3)=0.3$ and $f(3.6)=0.65$ use linear interpolation to estimate $f(3.25)$
b) The table below shows an experimental data.

x	0	1	2	3	4
$f(x)$	1	7	23	55	109

i. Develop a difference table
b. determine $f(0.5)$ using Newton-Gregory forward difference formula
c) Evaluate $\iint_{D} y d A$ where D is the region described by: $-1 \leq x<1$ and $0 \leq y<\sqrt{1-x^{2}}$
[5mks]
d) Using Newton- Raphson method, Determine the root of $x^{3}-3 x+1=0$ in the vicinity of $\mathrm{x}=0.5$ correct to 5 Decimal
[6mks]
e) Verify whether the function $f(z)=e^{x}(\cos y+i \sin y)$ is analytic
[3mks]
f) Is the function $f(z)=e^{x}(\cos y-i \sin y)$ harmonic?

QUESTION TWO

a) Show that $f(z)=e^{z}$ is analytic
[6mks]
b) Evaluate the line $\int_{c} y^{3} d x-x^{3} d y$ using Green's where C is the positively oriented circle of radius 2 centered at the origin.
c) Use double integrals to find the area enclosed $y=x^{3}+4 x, y=0, x=0$ and $x=4$
(7Mk s)

QUESTION THREE

a) Compute the integral $\iint_{D} x y^{2} d A$ where D is a rectangle defined by $0 \leq x<2$ and $0 \leq y<1$ [5MKS]
b) Calculate the volume under the surface $z=3+x^{2}-2 y$ over the region D defined by $0 \leq x \leq 1$ and $-x \leq y \leq x$.
[7MKS]
c) Given the following data, estimate $f(1.8)$ using Newton-Gregory difference interpolation polynomial:

i	0	1	2	3	4
x_{i}	1.0	3.0	5.0	7.0	9.0
f_{i}	0	1.0986	1.6094	1.9459	2.1972

QUESTION FOUR

a) Show that the function $f(z)=\left(x^{3}-3 x y^{2}\right)+j\left(3 x^{2} y-y^{3}\right)$. Satisfy the Cauchy -Riemann equations
b) Given the following data, estimate $f(2.2)$ using Newton-Gregory forward difference interpolation polynomial:

x	0	1	2	3	4
$f(x)$	1	2	4	8	16

c) Find the volume enclosed by the curve $x^{2}+y^{2}=16$, and the planes $z=0$ and $z=5-x$ (9 marks)

QUESTION FIVE

a) Verify if the complex function $f(z)=\frac{1}{z}$ is analytic
b) Find the image of the circle $|z|=2$ by the transformation $w=z+3+2 j$
c) Show that the function $4 x y-3 x+2$ is harmonic and hence determine its conjugate harmonic function

