

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS **UNIVERSITY EXAMINATION FOR:** DIPLOMA IN MECHANICAL, ELECTRICAL, BUILDING AND CIVIL ENGINEERING YEAR III SEMESTER II AMA 2351: ENGINEERING MATHEMATICS VI END OF SEMESTER EXAMINATION SERIES: DECEMBER 2016 TIME: 2HOURS DATE: Pick Date December 2016

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID Mathematical table, calculator* This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions

Do not write on the question paper.

Question one (compulsory) (30MKS)

- a) Given f(3)=0.3 and f(3.6)=0.65 use linear interpolation to estimate f(3.25) [5mks]
- b) The table below shows an experimental data.

х	0	1	2	3	4
f(x)	1	7	23	55	109

	i. Develop a difference table	[2mks]
	b. determine $f(0.5)$ using Newton –Gregory forward difference formula	[5mks]
c)	Evaluate $\iint_D y dA$ where D is the region described by: $-1 \le x < 1$ and $0 \le y < \sqrt{1-x}$	2
		[5mks]
d)	Using Newton- Raphson method, Determine the root of $x^3 - 3x + 1 = 0$ in the vicinity of x= to 5 Decimal	0.5 correct [6mks]
e)	Verify whether the function $f(z) = e^{x}(\cos y + i \sin y)$ is analytic	[3mks]

f) Is the function $f(z) = e^{x}(\cos y - i \sin y)$ harmonic? [4mks]

QUESTION TWO

a)	Show that $f(z) = e^{z}$ is analytic	[6mks]
b)	Evaluate the line $\iint_{c} y^{3} dx - x^{3} dy$ using Green's where C is the positively oriented circle of r	adius 2
	centered at the origin.	[7mks]
c)	Use double integrals to find the area enclosed $y = x^3 + 4x$, $y = 0$, $x = 0$ and $x = 4$	(7Mk s)

QUESTION THREE

a) Compute the integral $\iint_D xy^2 dA$ where D is a rectangle defined by $0 \le x \le 2$ and $0 \le y \le 1$ [5MKS]

b) Calculate the volume under the surface $z = 3 + x^2 - 2y$ over the region D defined by $0 \le x \le 1$ and $-x \le y \le x$. [7MKS] c) Given the following data, estimate f(1.8) using Newton-Gregory difference interpolation polynomial: [8mks]

i	0	1	2	3	4
x_i	1.0	3.0	5.0	7.0	9.0
f_i	0	1.0986	1.6094	1.9459	2.1972

QUESTION FOUR

- a) Show that the function f (z) = $(x^3 3xy^2) + j(3x^2y y^3)$. Satisfy the Cauchy –Riemann equations [5MKS]
- b) Given the following data, estimate f(2.2) using Newton-Gregory forward difference interpolation polynomial: [6mks]

x	0	1	2	3	4
f(x)	1	2	4	8	16

c) Find the volume enclosed by the curve $x^2 + y^2 = 16$, and the planes z = 0 and z = 5 - x (9marks)

QUESTION FIVE

- a) Verify if the complex function $f(z) = \frac{1}{z}$ is analytic [7mks]
- b) Find the image of the circle |z| = 2 by the transformation w = z + 3 + 2j [4mks]

Hence sketch its image in the w-plane (2marks)

c) Show that the function 4xy - 3x + 2 is harmonic and hence determine its conjugate harmonic function [7mks]