

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2351: ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION

SERIES:AUGUST2016

TIME:2HOURS

DATE:9Aug2016

Instructions to Candidates

You should have the following for this examination *Answer Booklet, examination pass and student ID* This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Evaluate f (15), given the following table of values:

Х	10	20	30	40	50
f(x)	46	66	81	93	101

(10 marks)

(b)

- (i) Determine the Maclaurin series for the functions e^x and $\sin x$ hence expand the $e^{\sin x}$ up to the term in fourth power
- (ii) Using the series in (a) above evaluate $\int_0^1 e^{\sin x} dx$ (10 marks)
- (b) Evaluate the following

i)
$$\int_{1}^{3} \int_{0}^{\ln y} dy dx$$

©Technical University of Mombasa

Page **1** of **3**

Question TWO

(a) Using Newton-Raphson iterative formula, determine the cube root of 123 correct to five decimal places (10 marks)

(b) Express
$$sin(x + h)$$
 as a series of powers of h hence evaluate $sin 44^{\circ}$ correct to five decimal places (10 marks)

Question THREE

(a) Given the polynomial $x^4 - x^3 - 2x - 34 = 0$ determine

i) the best approximation
ii) root of the equation correct to four significant figures taking $x_o = 3$

(10 marks)

(10 marks)

(10 marks)

(10 marks)

Question FOUR

- (a) Determine the first **four** Taylor series terms for the following i) $(x-1)e^{x}$ ii) $x^{2} + x - 2$. (10 marks)
- (b) Determine the volume of the solid that lies below the surface given by z = 16xy+200 and lies above the region in the xy-plane bounded by $y = x^2$ and $y = 8 x^2$.

(10 marks)

Question FIVE

(a) Determine the Maclaurin series for the following.

ii) $\int_0^2 \int_1^3 \int_1^2 xy^2 dz dy dx$

(i) sin^2x

$$(ii)\frac{x}{1-x^2}$$

©Technical University of Mombasa

(10 marks)

(b) Evaluate

(i)
$$\int_0^1 \int_3^2 \int_{1-y}^{y+2} 2xy \, dx \, dy \, dz$$

(ii)
$$\int_0^{\frac{\pi}{3}} \int_0^{2a\cos\theta} r \, dr \, d\theta$$

(10 marks)

tum