TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING

AMA2351:ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION
SERIES:DECEMBER2016
TIME:2HOURS
DATE:9Dec2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) Express $\sin (x+h)$ as a series of powers of h hence evaluate $\sin 44^{\circ}$ correct to 5 decimal places
(10 marks)
(b) Evaluate the positive root of the quadratic equation $2 x^{2}-6 x-3=0$ correct to 3 significant figures taking $x_{1}=3$ as the first approximation using Newton- Raphson iterative
(c) Evaluate the following
i) $\quad \int_{1}^{3} \int_{0}^{\ln y} d y d x$.
ii) $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} x y^{2} d z d y d x$
(10 marks)

Question TWO

(a) Determine the Maclaurin series for the function $f(x)=\frac{5+x}{(5-x)^{3}}$ as far as term in degree three hence evaluate $\int_{0}^{1}(x-7) f(x) d x$
(10 marks)
(b) Given that $x=1.1$ is an approximation to one of the root of the equation $x^{5}-x-0.2=0$, use Newton-Raphson iterative method to determine the root correct to five decimal places.
(10 marks)

Question THREE

(a) Use Newton-Raphson formula to calculate $\sqrt[4]{9}$ correct to six decimal places
(10marks)
(b) i) Given the function $y_{n}=f\left(x_{n}\right)$, derive an expression for linear interpolation and linear extrapolation
ii) Derive the Newton-Raphson on iterative formula for determining the root $y=f(x)=0$ hence evaluate $\sqrt[3]{65}$ correct to four significant figures
(10 marks)

Question FOUR

(a) Use Taylor approximation to express $\tan \left(\frac{\pi}{6}+h\right)$ as a polynomial in h as far as h^{3} hence estimate $\tan 34^{\circ}$ correct to five decimal places
.
(b) Evaluate
i) $\int_{0}^{1} \int_{3}^{2} \int_{1-y}^{y+2} 2 x y z d x d y d z$
ii) $2 \int_{0}^{\frac{\pi}{3}} \int_{a}^{2 a \cos \theta} r d r d \theta$
(10 marks)

Question FIVE

(a) Use Newton-Gregory forward difference formula to obtain a polynomial of minimum degree which exactly fit the data given below

x	-1	-0.7	-0.4	-0.1	0.2	0.5
$f(x)$	12	12.357	12.336	12.099	11.808	11.625

(10 marks)
(b) Expand $\log _{e} \frac{1+x}{1-x}$ in powers series and hence evaluate $\log _{e} 3$ correct to five decimal places. (10 marks)

