TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
Department of Electrical and Electronic Engineering

UNIVERSITY EXAMINATION FOR:

Higher Diploma in Electrical Engineering
SUPPLEMENTARY EXAMINATION
AMA 3151 ENGINEERING MATHEMATICS II
END OF SEMESTER EXAMINATION
SERIES: DEC 2017
TIME: 2HOURS
DATE: DEC 2017

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student I Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION ONE (compulsory)

1a) (i) State the Cauchy - Riemann equations.
(b) Express $f(z)=j-\frac{1}{\pi} \ln z$ in the form $\mathrm{u}+\mathrm{j} \mathrm{v}$. Hence, show that

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \text { and } \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { is harmonic } \tag{10marks}
\end{equation*}
$$

c) The circle $|z|=4$ is described in the z plane in anti-clockwise manner. Obtain its image in the W plane under the transformation $W=\frac{z+1}{z-2}$ and state the direction of development
i. Sketch the circle in the Z-plane and W-plane.
ii. II) Determine the centre and radius of the resulting circle in the W-plane. (11 marks)
d) Expand $f(z)=\sin z$ in Taylor series about $z=\frac{\pi}{4}$
(7marks)

QUESTION TWO

(a) The instantaneous current I passing through a circuit of resistance R and inductance L satisfies the differential equation. $L \frac{d i}{d t}+R i=V_{o} \cos \omega t$

Where t is time and V_{o} and ω are constant. Show that

$$
i=\frac{V_{o}}{\omega^{2} L^{2}+R^{2}}\{L \omega \sin \omega t+R \cos \omega t\}+C e^{-\frac{R}{L} t}
$$

b) State the Legendre Linear Equation
c) Solve completely the differential equation by using the substitution $e^{Z}=(2 x-1)$

$$
(x+2)^{2} \frac{d^{2} y}{d x^{2}}-(x+2) \frac{d y}{d x}+y=3 x+4
$$

(10 marks)

QUESTION THREE

a) Solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=2^{n} \square n^{2}$
(6marks)
b) Find the Residue of $f(z)=\frac{z}{z^{2}+1}$
c) Evaluate $\int_{c} \frac{2 z-1}{z(z+1)} d z$ using residue theorem where c is a circle $|z|=2$

QUESTION FOUR

(a) Determine where the function $W=z^{2}-4$ fails to be regular
b) Solve the following differential equations.
c) $\frac{d^{2} x}{d t^{2}}-6 \frac{d x}{d t}+10 x=20-e^{2 t}$ when $t=0, x=4, \frac{d x}{d t}=\frac{25}{2}$
c
Given that $u=x^{2}-y^{2}+e^{x} \cos y+8$
i) Show that U is harmonic
ii) Find the function V such that $f(z)=u+j v$ is analytic where U is as in (i)
(9marks)

QUESTION FIVE

(a) State Cauchy linear equation.
(b) Use the substitution $\mathcal{X}=e^{t}$ to express the differential equation.
$x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}+3 y=\left(1+\frac{1}{x}\right) \ln x$ in the form $a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=f(t)$

Where a, b and c are constants. Hence, solve the differential equation.
(20 marks)

