

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology in Conjunction with Kenya Institute of Highways \& Building Technology (KIHBT)

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR 2017/2018:

HIGHER DIPLOMA IN TECHNOLOGY ELECTRICAL POWER ENGINEERING

AMA 3250: ENGINEERING MATHEMATICS III END OF SEMESTER EXAMINATION SERIES: DECEMBER 2017

TIME: 2 HOURS
DATE:Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student I Mathematical table, calculator
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question One (Compulsory)

a. Table Q1 shows data recorded from an experiment.

Table Q1

x	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.00
$\mathrm{f}(\mathrm{x})$	-0.576	-0.224	-0.048	0.000	-0.032	-0.096	-0.144	-0.128	0.000

Use Newton - Gregory interpolation formula to determine the value of
i. $\quad f(-0.36)$
ii. $\quad f(0.75)$
(11 marks)
b. Given that x_{n} is an approximation to the root of the equation $x^{3}-5 x-40=0$.

Show using the Newton-Raphson method that a better approximation x_{n+1} is given by $x_{n+1}=\frac{2 x_{n}^{3}+40}{3 x_{n}^{2}-5}$. Hence find the root of the equation taking the first approximation

$$
x_{0}=4 .
$$

c. i) Using Newton Raphson Method, show that if x_{n} is an approximation to $\sqrt[4]{a}$, then a better approximation is given by $x_{n+1}=\frac{1}{4}\left(3 x_{n}+\frac{a}{x_{n}^{3}}\right)$
ii) Hence evaluate $\sqrt[4]{17}$ correct to $6 \mathrm{~d} . \mathrm{p}$
(10 marks)

Question Two

a. Show that the root of $e^{x}=-\frac{1}{2} x-1$ can be approximated by $x_{n+1}=\frac{x_{n} e^{x_{n}}-e^{x_{n}}-1}{e^{x_{n}}+\frac{1}{2}}$ using the Newton - Raphson method. Hence evaluate the root correct to four d.p. taking $x_{0}=2.5$
(8 marks)
b. Table Q2 represents values of x and corresponding values of $f(x)$

Table Q2

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	3	6	11	18	27

i. Use Newton - Gregory formula to obtain a polynomial that will fit the given data
ii. Hence find $f(2.8)$
(12 marks)

Question Three

a. Suppose the white cell count of a healthy individual per cubic millimeters of blood is distributed as poison with parameter $\mu=6$. Find correct to five decimal places the probability that:-
i) There will be no cells in the blood
ii) There will be a white cell
iii) There will be two or more white cells in blood.
b. Given the probability density function $p(x)=\left\{\begin{array}{l}A e^{-x / \tau} \quad x \geq 0 \\ 0 \quad \text { elsewhere }\end{array}\right.$

Find for $\mathrm{p}(\mathrm{x})$
i. The value of A
ii. $\quad E[P(x)]$
(7 marks)

The life-time in hours of bulbs from a factory was recorded as follows:-

Life-time (hrs)	$60-64$	$65-69$	$70-74$	$75-79$	$80-84$	$85-89$
Frequency	10	14	26	15	8	9

From the data, determine-
i. The mean
ii. Standard Deviations
(7 marks)

Question Four

a. Define the following terms:-
i. Skewness and distinguish between positive and negative Skewness
ii. Coefficient of dispersion
(6 marks)
b. A continuous random variable x has a probability density function $f(x)$ is defined by

$$
f(x)=\left\{\begin{array}{lr}
\frac{c^{2}}{2} e^{c x}, & x \geq 0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

is a p.d.f

Determine: -
i. The value of the constant c
ii. The expected value of x
iii. The standard deviation σ
(14 marks)

Question Five

a. 120 students perusing a course in electrical engineering were examined and their results summarized as shown in Table Q5 (a).

Table Q5 (a)

Marks obtained	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
No. of students	7	12	14	28	25	14	12	8

Using an assumed mean of 55 determine the
i. Mean mark
ii. Standard Deviation
iii. Pearson's coefficient of Skewness
(13 marks)
b. Table Q5 (b) show the percentage mark obtained by ten students in mathematics and physics

Table Q5 (b)

Mathematics	75	38	96	27	74	85	90	63	66	42
Physics	85	51	92	60	64	68	88	63	65	45

i. Determine product correlation coefficient
ii. Hence comment on the result
(7 marks)

