

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4315: ORGANIC SPECTROSCOPY

END OF SEMESTER EXAMINATION

$SERIES: DECEMBER {\tt Pickyear}$

TIME:2HOURS

DATE:Pick DateDec2016

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE

(a) Define the following terms as applied in NMR spectroscopy:

[3 marks]

- i. Chemical shift
- ii. Spin-spin coupling constant
- iii. Spin multiplicity

(b) Provide a possible structure of each of the following organic compounds with the given IR and ¹H-NMR data clearly indicating how you arrive at your suggestion:

i.	C_3H_8O	IR:	3400 cm ⁻¹ (broad, strong)
		¹ H-NMR:	δ 4.9, singlet (1H); δ 4.0, septet (1H); δ 1.1, doublet (6H)
			[4 marks]
ii.	C ₄ H ₇ ClO ₂	IR: ¹ H-NMR:	3000 cm ⁻¹ (very broad, strong), 1730 cm ⁻¹ (strong) δ 11.6, singlet (1H); δ 4.2, triplet (1H); δ 2.1, quintet (2H); δ 1.1, triplet (3H).

[4 marks]

(c) Describe the spectroscopic processes in UV spectroscopy that leads to an absorption spectrum.[4 marks]

(d) i. State the two types of molecular vibrations utilized in IR spectroscopy and provide with reason the vibration which will be registered at a higher IR absorption frequency. [4 marks]

ii. State four factors that influence IR absorption frequency by organic molecules. [4 marks]

(e) A molecule ion peak of unknown organic molecule appears at m/z value of 70. If the molecule is known to contain one atom of oxygen:

i. Determine its molecular formula by applying the Rule of Thirteen. [3 marks]

ii. Determine the unsaturation index and provide a probable line bond structure of the molecule.[4 marks]

Question TWO

(a) State and explain by making use of relevant examples any two factors that affect chemical shift values for a given proton in a molecule. [4 marks]

(b) State any two factors that influences coupling constant (J) between two coupled nuclei in ¹H NMR spectroscopy. [2 marks]

(c) An organic compound (X) has a molecular formula of C_4H_8O . The ¹³C-NMR and ¹H-NMR spectra of the compound are given below.

(i) Determine the double bond equivalence of the compound. [1 mark]

(ii) If the compound has a strong IR absorption peak of $\approx 1700 \text{ cm}^{-1}$, suggest two possible classes of organic compounds which the compound may belong. [2 marks]

(iii) State the multiplicity of the protons signal that appear in the low field region of ¹H NMR spectrum of the compound. [2 marks]

(iv) Based on the unsauration index, IR data, ¹³C NMR and ¹H NMR spectra, provide line bond structure of the compound (X) clearly accounting for the pieces of information obtained from each spectral data. **[9 marks]**

Question THREE

(a) Differentiate between the following pairs of terms as applied in UV spectroscopy. [4 marks]

- i. Hypsochromic shift and bathochromic shift
- ii. Hyperchromic effect and hypochromic effect

(b) Provide the mathematical expression of Beer-Lambert's law and explain why relatively dilute solutions are used in UV quantitative analysis. [3 marks]

(c) Explain why broad absorption peaks are usually observed in UV spectra. [3 mark]

(d) Calculate the expected λ max for the following pair of organic molecules by applying Woodward-Fieser rules and state with reason if it is possible to differentiate them by making use of UV spectroscopy.

[10 Marks]

Question FOUR

(a) Define the following terms as applied in IR Spectroscopy.

- i. Overtones
- ii. Combination bands
- iii. Fingerprint region

(b) Outline the effect of IR radiation on organic molecules state the type of information which can be deduced to help in structure elucidation. [3 marks]

(c) Arrange the following molecules in the increasing order of v N-H stretch in IR spectroscopy and justify your answer. [5 marks]

(d) Explain how you can make use of IR spectroscopy to differentiate between the following pairs of molecules. [9 marks]

Question FIVE

(a) Define the following terms as applied in mass spectrometry.

[4 marks]

- i. Mass spectrum
- ii. Base peak
- iii. Molecular ion
- iv. Metastable ion

[3 marks]

(b) Describe the following rules as applied in mass spectrometry.

- i. Nitrogen rule
- ii. Bromine and Chlorine rule

(c) The figure below id the MS spectrum of dipropylamine. Propose mechanism of fragmentation for the molecule to account for the signal registered at m/z of 101, 100, 72, 58 and 30. **[10 marks]**

