TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF PURE \& APPLIED SCIENCES
 UNIVERSITY EXAMINATION FOR:
 DES 16S AND DFQA 16S
 ACH 2105: FUNDAMENTALS OF CHEMISTRY
 END OF SEMESTER EXAMINATION
 SERIES:DECEMBER2016
 TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

Question ONE

a) Explain why alkenes are the only hydrocarbons able to form stereoisomers
b) Given the half-cell equation $\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}==>\mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}$
(i) Construct the fully balanced redox ionic equation for the oxidation of hydrogen peroxide by potassium manganate (VII) (4marks)
c) List FOUR factors that influence ionization energy
(4marks)
d) Discus using examples the different between nuclear fusion and nuclear fission
(4marks)
e) State why alkenes are the only hydrocarbons able to form stereoisomers
f) Nitrogen gas combine with hydrogen gas to form ammonia according to the equation below explain how changes in temperature, pressure and concentration affect equilibrium constant (9 marks)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}-1024 \mathrm{KJmol}^{-1}
$$

Question TWO

a) $2.00 \mathrm{dm}^{3}$ of concentrated hydrochloric acid (10.0 M) was spilt onto a laboratory floor. It can be neutralized with limestone powder. [atomic masses: $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16$)
(i) Give the equation for the reaction between limestone and hydrochloric acid
(ii) How many moles of hydrochloric acid was spilt?
(iii) How many moles of calcium carbonate will neutralize the acid?
b) If $1000 \mathrm{dm}^{3}$ of sulphuric acid, of concentration $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$, leaked from a tank, calculate the minimum mass of magnesium oxide required to neutralize it
c) State Heisenberg's uncertainty principle

Question THREE

a) a buffer solution containing $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ of ethanoic acid and $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ of sodium ethanoate calculate its pH given K_{a} for ethanoic acid is $1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.
(7marks)
b) Chlorination of methane is a chain reaction give equation for
i) the chain initiation step
(2 marks)
ii) two equation for chain propagating steps
iii) three equation for chain terminating step
iv) formation of the least chlorinated methane

Question FOUR

a) The pH of $0.01 \mathrm{~mol} \mathrm{dm}-3$ of ethanoic acid (acetic acid), $\mathrm{CH}_{3} \mathrm{COOH}$ is 3.40 at $25^{\circ} \mathrm{C}$. What is the dissociation constant of ethanoic acid at this temperature?
b) Draw and name isomeric structural of a compound with molecule formulae. $\mathrm{C}_{5} \mathrm{H}_{10}$ (6 marks)
c) State any THREE applications of radioactivity.
(3marks)
d) Differentiate between Wavelength and wave number

Question FIVE

Describe the periodic trend of the following giving reason in each case
i) Ionization energy
ii) Electronegativity (3 marks)
iii) melting point
iv) Atomic radius
v) Reactivity

