FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (INSTITUTIONAL BASED EXAMINATION)
 ECE 2306: ENGINEERING SURVEY III
 END OF SEMESTER EXAMINATION
 SERIES: MARCH 2017
 TIME: 2 HOURS
 DATE: $3^{\text {rd }}$ April

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
-Drawing instruments.
This paper consists of five questions.
Attempt any THREE questions.
Do not write on the question paper.

QUESTION ONE (Compulsory)

a) Tabulate the data required to set out a simple circular curve using a chain and a tape. The radius of the curve is given as $\mathbf{6 0 0} \mathbf{~ m}$ connecting two straights deflecting at an angle of $\mathbf{1 8}^{\mathbf{0}} \mathbf{2 4}$ ' and the chainage of the intersection \mathbf{I} is $\mathbf{2 1 4 0} \mathrm{m}$ (use standard chord of 20 m).
(14 Marks)
b) The coordinates of a polygon $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E were recorded as follows:

Station	$\mathbf{E}(\mathbf{m})$	$\mathbf{N}(\mathbf{m})$
A	200.00	300.00
B	206.98	285.65
C	368.93	282.02
D	395.93	248.80
E	200.94	185.70

If the chain used nominally during the measurements was found to be 0.1 m too long, determine the corrected area of the plot to the nearest hectares.
(10 Marks)
c) A road has a formation breadth of 10 m and the side slopes of 1 in 1 cut, and 1 in 3 fill. The original ground has a cross -fall of 1 in 5 . If the depth of excavation of two sections 25 m apart are 0.8 and 1.2 m respectively, calculate the volumes of both the cut and the fill over this length.
(6 Marks)

Attempt any TWO questions QUESTION TWO

a) The figure 1, below shows the existing ground levels on a 20 m square grid forming part of a site which is to be excavated to a uniform formation level of 10.00 m above the datum. By assuming that the figure is divided in to triangular and rectangular shapes, calculate the volume of earth to be excavated assuming vertical sides. (14 Marks)
b) Using the appropriate formulae where applicable, explain ANY three methods applied in the determination of the areas of irregular figures.

QUESTION THREE

a) In order to find the excavation required for a railway cutting, cross - sections were taken at every 40 m . As the ground surface was very irregular, the cross-sections were plotted and their areas obtained by planimeter, the results were provided as follows:

Chainage of section $(m):$	1840	1860	1890	1920	1950	1980	2010	2040	2070	2100	2130	
Area in M^{2}	$:$	24	196	248	101	200	296	363	320	90	140	50

Determine the volume of excavation in m^{3} using both the end area and prismoidal formulas. State which of the above answers you consider to be the more accurate, giving reasons.
(12 Marks)
b) Using a sketch, derive the formula for the widths $\mathbf{W}_{\mathbf{1}}$ and $\mathbf{W}_{\mathbf{2}}$ of a section with a crossfall.

QUESTION FOUR

a) Derive the data required to set out a kerb line of radius 10 m with a deflecting angle of 90°, where offset required are set out at an interval of 2.5 m .
(10 Marks)
b) Tabulate the data required to set out a simple circular curve using a theodolite and a chain. The curve has a radius of 600 m , connecting two straights having a deflection angle of $18^{0} 24^{\prime}$, given chainage at the intersection point (I) as 2140.0 m .

QUESTION FIVE

a) A cutting is to be made in the ground which has a traverse slope of $1: 5$. The width of the formation was 9.0 m and the side slopes are 1 vertical to 2 horizontal. If the depths of the center lines of the three sections of 20 m apart were $2.5,5.10$ and 7.30 m respectively. Determine the volume of the earth over this length.
(14 Marks)
b) State Simpson's rule. Determine the area of a plot given the offsets scaled from a plan at an interval of 20 m . The information was provided as follows:

Offset (m):	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}
Length (m):	16.78	19.81	20.44	19.23	16.76	18.68	17.68	17.37	16.76	

