

# TECHNICAL UNIVERSITY OF MOMBASA <br> Faculty of Engineering and Technology DEPARTMENT OF MEDICAL ENGINEERING <br> DIPLOMA IN MEDICAL ENGINEERING DME 315 Y2S1 

AMA 2250
ENGINEERING MATHEMATICS III

END SEMESTER EXAMINATION
SERIES: DECEMBER 2015
TIME: 2 HOURS

## INSTRUCTIONS

You should have the following for this exmination

- Answer booklet
- Scientific calculator
- Mathematic table

This paper consists of $\boldsymbol{F I V E}$ questions
Answer Question ONE ( compulsory) and any other TWO questions
The paper consists of $\mathbf{3}$ PRINTED pages

## Question1

(a) Solve the following simultaneous equations using cofactors
$x+y+z=3$
$x-2 y+3 z=4$
$4 y+x+9 z=6$
(10 marks)
(b) Given that $A=2 i-j+k, B=i-2 j-5 k$ and $C=3 i-4 j-4 k$ show that AB and C forms the sides of a right angled triangle
(10 marks)
(c) i) convert the complex number $\left(\frac{2+i}{3-i}\right)^{2}$ into polar form
ii) convert $12<-60^{\circ}$ to rectangular form

## Question2

(a) Vector $p=2 i+2 j-k$ and $q=6 i-3 j+2 k$, determine
i) $p x q$
ii) a unit vector perpendicular to both $p$ and $q$
iii) angle between the two vectors
(b) Determine the Eigen values and the corresponding Eigen vectors for the Matrix

$$
\left(\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right)
$$

(10 marks)

## Question3

(a) Express the roots of $(-14+j 3)^{-2 / 5}$ in polar form
(b) Use cramers rule to solve the following simultaneous equation

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

## Question4

(a) i) Express $\frac{1+2 i}{1-3 i}$ in the form $r(\cos \theta+i \sin \theta$
ii) Determine the modulus and argument of the complex number $Z=2+$ 3jmexpressingit in polar form
(b) Given that $A=x^{2} y z i+x y z j+y^{2} z k$ and $B=x y^{2}-2 y^{2}+x^{2} z^{2}$
i) prove that div curl $\mathrm{A}=\operatorname{curl} \operatorname{grad} \mathrm{B}$
ii) determine div grad B at $1,1,1$

## Question5

(a) A four terminal network is made of parallel-series impedances of $5 \Omega, 10 \Omega$ and $8 \Omega$ respectively as shown below. If the input voltage $V_{i}=25 \Omega$ and input current 2 A , determine the output voltage and current using the resultant impedance transfer

(b) Prove that $\nabla^{2} \frac{1}{|r|}=0$

