

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING, MECHANICAL ENGINEERING, ELECTRICAL ENGINEERING, BSMD AND BTIT

SMA 2102/AMA 4105/SMA 2173: CALCULUS II

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE (30 MARKS)

a. Solve the integral

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^2 t} dt$$

(6 marks)

b. Simplify
$$\tan h^{-1} \frac{1}{2}$$
 (4 marks)

c. Evaluate
$$\int \sqrt{\tan x} \sec^2 x \, dx$$
 (4 marks)

d. Find the volume of a solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1,4] is revolved about the x axis (5 marks)

e. Show that the point (2,4) lies on the curve $x^3 + y^3 - 9xy = 0$. Find the normal to the curve at the point (5 marks)

(6 marks)

(4 marks)

f. Use trapezoidal rule to evaluate $\int_0^1 x^3 dx$ for n=5

QUESTION TWO (20 MARKS)

a. Find the horizontal and vertical asymptotes of the curve $y = \frac{x+3}{x+2}$ hence sketch the curve (6 marks) b. Evaluate $\int tan^5 x dx$ (4 marks) c. Find $\int \frac{5x-4}{2x^2+x-1} dx$ (5 marks)

d. Evaluate
$$\int \sin^2 3x \cos^2 3x dx$$
 (5mks)

QUESTION THREE (20 MARKS)

a. Evaluate
$$\int_0^1 \sin h^2 x \, dx$$
 (4 marks)

b. Solve the
$$\int_{2}^{3} \frac{x^{3} - 2x^{2} - 4x - 4}{x^{2} + x - 2} dx$$
 correct to 4 significant figures (6 marks)

c. Solve the ordinary differential equation $\frac{dy}{4x^2} = \frac{dx}{3y^3}$ (4 marks)

d. The area enclosed by the curve $y = 3e^{\frac{x}{3}}$, the x-axis and ordinates x = -1 and x = 3 is rotated 360° about the x-axis. Determine the volume generated. (6 marks)

QUESTION FOUR (20 MARKS)

a.	Approximate $\int_{0.8}^{1.6} t(8-t^3)^{\frac{1}{2}} dt$ with n=8 using simpson's rule	(7 marks)
b.	Evaluate $\int_{-1}^{1} \int_{2}^{3} \int_{0}^{1} (xy + yz) dz dy dx$	
		(5 marks)
c.	Use integration by parts to find $\int x^2 e^x dx$	(4 marks)

d. Verify $\sinh 2x = 2 \sin h x \cosh x$

QUESTION FIVE (20 MARKS)

a. Solve the ordinary differential equation $\frac{dy}{dx} = \frac{2x^2}{y^3}$ (6 marks)

b. Use mid ordinate rule to approximate $\int_0^2 e^{x^2} dx$ for n=10 (8 marks)

c. Decompose $\frac{4-2x}{(x^2+1)(x-1)^2}$ into partial fractions and hence evaluate

$$\int \frac{4-2x}{(x^2+1)(x-1)^2} dx.$$
 (6mks)