
TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence
DEPARTMENT OF MATHEMATICS AND PHYSICS
MAY 2016 SERIES EXAMINATION
UNIT CODE: AMA 4421 UNIT TITLE:NUMERICAL ANALYSIS

                                    II
    
## MAIN EXAMINATION

TIME ALLOWED: 2HOURS
INSTRUCTIONTO CANDIDATES:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator
This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown


## QUESTION ONE (30 MARKS) COMPULSORY

a. Consider the matrix $A=\left[\begin{array}{cc}4 & -1 \\ -4 & 4\end{array}\right]$, determine
i. The characteristic equation of $A$
ii. The Eigen values of $A$
iii. The corresponding Eigen vectors
b. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$, using Romberg's method correct to $4 d . p$. Hence find an approximate value of $\pi$
(7 marks)
c. Solve the following system of equations using Gaussian elimination method
$2 x+3 y-z=5$
$4 x+4 y-3 z=3$
$-2 x+3 y-z=1$
(6 marks)
d. Solve the hyperbolic equation
$U_{t t}=4 U_{x x}$ with boundary conditions $u(0, t)=0=U(4, t)$
$U_{t}(x, o)=0$ and $U(x, 0)=x(4-x)$

## QUESTION TWO (20 MARKS)

a. A rod is rotating in a plane about one of its ends. If the following table gives the angle Oradius through which the rod has turned for different values of time $t$ seconds, find its angular velocity and angular acceleration when $t=0.7$ seconds

| $t$ seconds | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\Theta$ radians | 0 | 0.12 | 0.48 | 1.1 | 2 | 3.2 |

b. Use Gauss Seidel iterative method to find $\mathrm{x}, \mathrm{y}$ and z in the system below

$$
\begin{gathered}
8 x-3 y+2 z=20 \\
6 x+3 y+12 z=35 \\
4 x+11 y-z=33
\end{gathered}
$$

c. Solve the parabolic equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

with conditions $u(0, t)=0=U(4, t) U(x, 0)=x(4-x)$
taking $h=1$ and employing the Bender-Schmidt recurrence equation (use ten steps)
(8 marks)

## QUESTION THREE (20 MARKS)

a. Solve by Jacobi iteration method the system (use four iterations) (7 marks)

$$
\begin{gathered}
8 x-3 y+2 z=20 \\
6 x+3 y+12 z=35 \\
4 x+11 y-z=33
\end{gathered}
$$

b. A slider in a machine moves along the straight rod. Its distance xcm along the rod is given by table below for various values of the time $t$ seconds. Find the velocity and acceleration of the slider when $t=0.3$ seconds

| $T$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x$ | 30.13 | 31.62 | 32.87 | 33.64 | 33.95 | 33.81 | 33.24 |

c. Maximize $\mathrm{p}=4 x+3 y$
subject to $-x+2 y \leq 4$

$$
x+2 y \leq 14
$$

$$
2 x+y \leq 16
$$

$x, y \geq 0$ using Simplex method
(7 marks)

## QUESTION FOUR (20 MARKS)

a. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Weddle'srule taking $h=\frac{1}{6}$ hence compute an appropriate value of $\pi$
b. Solve the elliptic equation using the Liebmann's iteration process
$U_{x x}+U_{y y}=0$ in $0 \leq x \leq 4,0 \leq y \leq 4$ given that $U(0, y)=0 U(4, y)=8+2 y$
$U(x, 0)=\frac{x^{2}}{2}$ and $u(x, 4)=x^{2}$. Take $h=k=1$ and obtain the result correct to one decimal
c. Solve by relaxation method, the equation

$$
\begin{gathered}
10 x-2 y-2 z=6 \\
-x+10 y-2 z=35 \\
-x-y+10 z=33
\end{gathered}
$$

## QUESTION FIVE (20 MARKS)

a. Solve the following equations by Gauss-Jordan method

$$
\begin{gathered}
x+2 y+z-w=-2 \\
2 x+3 y-z+3 w=7 \\
x+y+3 z-2 w=-6 \\
x+y+z+w=2
\end{gathered}
$$

b. Solve by crouts' method

$$
\begin{gathered}
5 x-2 y+z=4 \\
7 x+y-5 z=8 \\
3 x+7 y+4 z=10
\end{gathered}
$$

