

TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

MAY 2016 SERIES EXAMINATION

UNIT CODE: AMA 4421 UNIT TITLE:NUMERICAL ANALYSIS II

MAIN EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a.	Consider the matrix $A = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$	$\begin{bmatrix} -1\\ 4 \end{bmatrix}$, determine
----	---	--

- i. The characteristic equation of A (2 marks)
- ii. The Eigen values of A
- iii. The corresponding Eigen vectors (2 marks)

(2 marks)

- iv. Prove that the vectors in (iii) are linearly independent (2 marks)
- b. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$, using Romberg's method correct to 4d.p. Hence find an approximate value of π (7 marks)
- c. Solve the following system of equations using Gaussian elimination method 2x + 3y - z = 5 4x + 4y - 3z = 3-2x + 3y - z = 1 (6 marks)
- d. Solve the hyperbolic equation $U_{tt} = 4U_{xx}$ with boundary conditions u(0,t) = 0 = U(4,t) $U_t(x,o) = 0$ and U(x,0) = x(4-x) (9 marks)

QUESTION TWO (20 MARKS)

 A rod is rotating in a plane about one of its ends. If the following table gives the angle θradius through which the rod has turned for different values of time t seconds, find its angular velocity and angular acceleration when t=0.7 seconds

t seconds	0	0.2	0.4	0.6	0.8	1
Θ radians	0	0.12	0.48	1.1	2	3.2

(6 marks)

b. Use Gauss Seidel iterative method to find x,y and z in the system below (6 marks)

$$8x - 3y + 2z = 20$$

$$6x + 3y + 12z = 35$$

$$4x + 11y - z = 33$$

c. Solve the parabolic equation

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$$

with conditions u(0, t) = 0 = U(4, t)U(x, 0) = x(4 - x)

taking h=1 and employing the Bender-Schmidt recurrence equation (use ten steps) (8 marks)

QUESTION THREE (20 MARKS)

a. Solve by Jacobi iteration method the system (use four iterations) (7 marks)

$$8x - 3y + 2z = 20$$

$$6x + 3y + 12z = 35$$

$$4x + 11y - z = 33$$

A slider in a machine moves along the straight rod. Its distance x cm along the rod is given by table below for various values of the time t seconds. Find the velocity and acceleration of the slider when t=0.3 seconds
 (6 marks)

						-	-
Т	0	0.1	0.2	0.3	0.4	0.5	0.6
х	30.13	31.62	32.87	33.64	33.95	33.81	33.24

c. Maximize p = 4x + 3y

subject to
$$-x + 2y \le 4$$

 $x + 2y \le 14$
 $2x + y \le 16$

 $x, y \ge 0$ using Simplex method

(7 marks)

QUESTION FOUR (20 MARKS)

- a. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Weddle'srule taking $h = \frac{1}{6}$ hence compute an appropriate value of π (6 marks)
- b. Solve the elliptic equation using the Liebmann's iteration process $U_{xx} + U_{yy} = 0$ in $0 \le x \le 4$, $0 \le y \le 4$ given that U(0, y) = 0 U(4, y) = 8 + 2y

 $U(x,0) = \frac{x^2}{2}$ and $u(x,4) = x^2$. Take h = k = 1 and obtain the result correct to one decimal (8 marks)

c. Solve by relaxation method, the equation (6 marks)

$$10x - 2y - 2z = 6$$
$$-x + 10y - 2z = 35$$
$$-x - y + 10z = 33$$

QUESTION FIVE (20 MARKS)

a. Solve the following equations by Gauss-Jordan method

$$x + 2y + z - w = -2$$

$$2x + 3y - z + 3w = 7$$

$$x + y + 3z - 2w = -6$$

$$x + y + z + w = 2$$

(10 marks)

b. Solve by crouts' method

$$5x - 2y + z = 4$$
$$7x + y - 5z = 8$$
$$3x + 7y + 4z = 10$$

(10 marks)

THIS IS THE LAST PRINTED PAGE