

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 3 HOURS

DATE: MAY

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID

This paper consists of five questions. Attempt QUESTION ONE and any other TWO.

Do not write on the question paper.

Question ONE

a. State and prove Neyman-Pearson Lemma (8 marks)

b. A manufacturer is interested in the output voltage of a power supply used in a PC. Output voltage is assumed to be normally distributed, with standard deviation 0.25 Volts, and the manufacturer wishes to test H_0 ; $\mu = 5$ Volts against H_1 ; $\mu \neq 5$ Volts, using 8 units.

i. The acceptance region is $4.85 \le \overline{x} \le 5.15$ Find the level of significance. (4marks)

ii. Find the power of the test for detecting a true mean output voltage of 5.1 Volts. (5marks)

c. Show that the class of all test functions is a convex function (3marks)

d. Define the power function of a test (4marks)

e. Show that 1-parameter exponential family has a monotone likelihood ratio. (6marks)

Question TWO

a. Let x be a random variable with probability density function f(x). Find a size α test for; (7marks)

$$H_0; f(x) = f_0(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

$$H_1$$
; $f(x) = f_1(x) = \frac{1}{\pi} \frac{1}{1+x^2}$

- b. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(0, \sigma^2)$ random variables. Determine whether there exists a uniform most powerful test for the hypothesis of the form H_0 ; $\sigma^2 = \sigma_0^2$ against H_1 ; $\sigma^2 = \sigma_1^2$ (8 marks)
- c. Show that for testing H_0 ; $\theta_1 \le \theta \le \theta_2$ against H_1 ; $\theta < \theta_1$ or $\theta > \theta_2$ there exists a uniform

$$\text{most powerful unbiased size } \alpha \text{ test given by } \phi(x) = \begin{cases} 1 & \textit{if} & T(x) > c_1 \\ v & \textit{if} & T(x) = c_2 \\ 0 & \textit{if} & c_1 < T(x) < c_2 \end{cases} \tag{5 marks}$$

Question THREE

- a. Define an unbiased test (5 marks)
- b. If the $pdf\ f(x;\theta)$ are such that the power function of every test is continuous and if ϕ_0 is uniform most powerful among all tests satisfying some conditions and is level α test, then show that ϕ_0 is unbiased. (5 marks)
- c. Let $X \sim bin(n,p)$, find an unbiased size α test for H_0 ; $p=p_0$ against H_1 ; $p=p_1$ against (10 marks)

Question FOUR

- a. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(\mu, \sigma^2)$ random variables, Let $y_1, y_2, ..., y_n$ be independently identically distributed $N(\mu, \sigma^2)$ random variables. Where σ^2 is common. Suppose X'_i s and Y'_i s are independent. Determine a size α LRT test for H_0 ; $\mu = \mu_0$ against H_1 ; $\mu \neq \mu_0$ (10 marks)
- b. Let $x_{i1}, x_{i2}, \ldots, x_{in}$ be independent normally distributed random variables with mean μ_i and variance σ_i^2 . Determine a α likelihood ratio test for the hypothesis of the form $H_0; \sigma_i^{\ 2} = \sigma_j^2$ against $H_1; \sigma_i^{\ 2} \neq \sigma_i^2$ (10 marks)

Question FIVE

- a. Determine a α likelihood ratio test for the hypothesis of the form H_0 ; $\sigma^2=\sigma_0^2$ against H_1 ; $\sigma^2=\sigma_1^2$ (μ is unknown) (10marks)
- b. Let $y_1, y_2, ..., y_n$ be independently identically distributed $N(\beta, \theta^2)$ random variables. Find a size α likelihood ratio test for testing H_0 ; $\beta = \beta_0$ against H_1 ; $\beta \neq \beta_0$ (10 marks)