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Instructions to Candidates: 

You should have the following for this examination 
- Answer Booklet 
- Scientific Calculator 

This paper consists of FIVE questions and TWO sections A and B. 
Answer question ONE (COMPULSORY) and any other TWO questions 
Maximum marks for each part of a question are as shown  
This paper consists of THREE printed pages. 
 

SECTION A (COMPULSORY)      
 

Question ONE  (30 marks) 
 

a. Consider the following second order partial differential equation:- 

                                               3 10 3 0xx xy yyu xy u u    
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(i) Classify it.         (2 marks) 

(ii) Reduce to canonical form.       (9 marks) 

(iii) Find the general solution in terms of arbitrary functions.    (2 marks) 

 

b. A string of length L is stretched between points  0,0  and  0,L  on the x  axis. At time 

0t  it has a shape given by ( ), 0f x x L   and it is released from rest.  

i. Give the equation of a vibrating string described here    (2 marks) 

ii. State the boundary  and initial conditions associated with this problem  (4 marks) 

iii. Find the displacement of the string at any latter time t  .   (11 marks) 

 

 

SECTION B 

Question TWO   (20 marks) 

a. Solve the Laplace’s equation equation 2 0u   in two dimension which satisfies the 

conditions  

                   (0, ) ( , ) ( ,0) 0u y u l y u x     and  

                               ( , ) sin
n x

u x a
l


  

by  the method of separation of variables.     (20 marks) 

 

 

Question THREE   (20 marks) 

a. Show that in cylindrical coordinates , ,r z  defined by the relation 

cos , sin ,x r y r z z     , the Laplace’s equation  2 0u   takes the  

form 
2 2 2

2 2 2 2

1 1
0

u u u u

r r r r z

   
   

   
     (10 marks) 

b. Classify and transform to canonical form 2 0xx yyu x u    (10 marks) 
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Question FOUR   (20 marks) 

a. Obtain the general solution for  4 5 2xx xy yy x yu u u u u      (8 marks) 

b. Solve by the method of characteristics 3 0
v v

t x

 
 

 
,  

1
, 0 1

2
0,0( ,0) {

x x

therwisev x
 

        (12 marks) 

 

 

Question FIVE   (20 marks 

 

a. Find the Fourier series expansion of ( )f x x  on ( , )L L    (8 marks) 

b. Solve Laplace’s equation inside a circle of radius a  

2
2

2 2

1 1
0

u u
u r

r r r r 

   
    

   
 subject to ( , ) ( )u a f    (12 marks) 


