TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

MAY 2016 SERIES EXAMINATION

UNIT CODE: AMA 4421 UNIT TITLE:NUMERICAL ANALYSIS

II

SUPPLIMENTARY EXAMINATION

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS) COMPULSORY

a. Find the first, second and third derivatives of the function tabled below, at the point

$$
x=1.5
$$

X	1.5	2.0	2.5	3.0	3.5	4.0
$F(x)$	3.375	7.0	13.625	24	38.875	59

(5 marks)
b. Let $A=\left(\begin{array}{cc}12 & -15 \\ 4 & -4\end{array}\right)$ be a square matrix
i. Write down the characteristic equation of A
(2 marks)
ii. Calculate the eigen values of A (2 marks)
iii. Determine the eigen vectors of A
c. Solve the elliptic equation for the following square mesh with boundary values as shown

(8 marks)
d. The speed, v meter per second of a car, t seconds after it starts is shown in the following table.

T	0	12	24	36	48	60	72	84	96	108	120
v	0	3.6	10.08	18.9	21.6	18.54	10.26	5.4	4.5	5.4	9

Using Simpson's $\frac{1}{3}$ rule, find the distance travelled by the car in 2 minutes? (5 marks)
e. Solve the system of equations by using Gauss-Jordan elimination method
$x+2 y+z=8$
$2 x+3 y+4 z=20$
$4 x+3 y+2 z=16$
(6 marks)

QUESTION TWO (20 MARKS)

a. Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering five sub intervals (5 marks)
b. Using crank Nicholson's method, solve $U_{x x}=16 U_{t} \quad 0<x<1 t>o U(x, 0)=$ $0, U(0 . t)=0$ and $U(1, t)=50 t$. compute u for two steps in t direction taking $h=\frac{1}{4}$
c. Use Gaussian elimination to solve

$$
\begin{align*}
& x+y+z=3 \\
& x+2 y+3 z=4 \\
& x+4 y+9 z=6 \tag{6marks}
\end{align*}
$$

QUESTION THREE (20 MARKS)

a. Maximize $P=x+4 y$ subject to

$$
\begin{align*}
& -x+2 y \leq 6 \\
& 5 x+4 y \leq 40 \\
& x, y \geq 0 \tag{5marks}
\end{align*}
$$

b. By the methods of least squares, find the straight line that best fits the following data

X	1	2	3	4	5
y	14	27	40	55	68

(6 marks)
c. Solve the poisson equation
$\nabla^{2} U=-10\left(x^{2}+y^{2}+10\right)$
over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length=1

QUESTION FOUR (20 MARKS)

a. Solve the Laplace equation $U_{x x}+U_{y y}=0$ inside the square region bounded by the lines $\mathrm{x}=0, \mathrm{x}=4, \mathrm{y}=0, \mathrm{y}=4$ given that $U=x^{2} y^{2}$ on the boundary. Use relaxation technique (7 marks)
b. solve the system of equations

$$
\begin{aligned}
& x+y+z=3 \\
& x+2 y+3 z=4 \\
& x+4 y+9 z=6
\end{aligned}
$$

by Crout's methods
c. find the orthogonal trajectories of the family of curves,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1
$$

Where λ is a parameter

QUESTION FIVE (20 MARKS)

a. Solve the following system, by the method of triangularisation

$$
\begin{aligned}
& 2 x-3 y+10 z=3 \\
& -x+4 y+2 z=20 \\
& 5 x+2 y+z=-12
\end{aligned}
$$

b. Find the numerical value of the first derivative at $x=0.4$ of the function $f(x)$ defined below

X	0.1	0.2	0.3	0.4
$F(x)$	1.10517	1.22140	1.34986	1.49182

c. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpson's ${ }^{3} / 8$ rule taking $\mathrm{h}=1 / 6$

THIS IS THE LAST PRINTED PAGE

