TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4410: PARTIAL DIFFERENTIAL EQUATIONS 1

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper. PAPER 2**

QUESTION ONE (30 MARKS)

- a. Solve the linear PDE $p+3q=5z+\tan(y-3x)$ (5 marks)
- b. Derive a PDE by eliminating the arbitrary function ϕ from the equation $\phi(x^3 + y^3 + z^3, z^3 - 2x^2y^2) = 0$ (6 marks)
- c. Classify each of the following equations as elliptic, parabolic or hyperbolic

i.
$$u_{xx} + u_{yy} = 0$$
 (2marks)

ii.
$$u_{xx} + 3u_{xy} + 4u_{yy} + 5u_x - 2u_y + 4u = 2x - 3y$$
 (2marks)

- d. Find the general solution of $r-3s+2t = e^{x+y}$ [7 Marks]
- e. Find the equation of the surface satisfying the equation 4yzp + q + 2y = 0and passing through $y^2 + z^2 = 1$, x + z = 2. [8 marks]

QUESTION TWO (20 MARKS)

a. Find the complete integral of $2p_1x_1x_3 + p_2^2p_3 + 3p_2x_3^2 = 0$ using the Jacobi's method. (10 marks)

b. Use Charpit's method to find the complete integral of $xp + q = p^2$ (10 marks)

QUESTION THREE (20 MARKS)

- a. Derive a PDE by eliminating the arbitrary constants *a* and *b* from $z = ax^2 + by^2 + ab$. (5 marks)
- b. A string of length L is stretched between points (0,0) and (L,0) on the x axis. At time t = 0 it has a shape given by f(x), $0 \le x \le L$ and it is released from rest. Find the displacement of the string at any latter time. (15 marks)

QUESTION FOUR (20 MARKS)

- a. Solve the heat conduction equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$, k =constant subject to the following boundary conditions: $\begin{cases} u(x,0) = f(x), & 0 \le x \le L \\ \frac{\partial u}{\partial x} \Big|_{x=0} = \frac{\partial u}{\partial x} \Big|_{x=L} = 0, \quad t \ge 0 \end{cases}$ [12 Marks]
- b. Solve $(D_x^2 D_x D_y 2D_y^2 + 3D_x + 2)z = 0$ [8 Marks]

QUESTION FIVE (20 MARKS)

a. Show that the orthogonal trajectories on the hyperboloid $x^2 + y^2 - z^2 = 1$ of a conic in which it is cut by the system of planes x + y = c are the curves of intersection with the family of surfaces (x - y)z = k where k is a parameter. (13marks) Find the integral curves of the equations $\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$ (7 marks)