TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences
DEPARTMENT OF MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE
AMA 4323: ORDINARY DIFFERENTIAL EQUATIONS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016
TIME: 2 HOURS
DATE: 2016

PAPER B

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

(a) Solve the system of linear equations

$$
\begin{aligned}
& x^{\prime}(t)=3 x(t)-4 y(t) \\
& y^{\prime}(t)=4 x(t)-7 y(t)
\end{aligned}
$$

(b) (i) Consider the equation $y^{\prime}=f(x, y)$.define a rectangular region L by

$$
\left|x-x_{0}\right| \leq a \text { and }\left|y-y_{0}\right| \leq b \text { With points }\left(x_{0}, y_{0}\right) \text { at its centre. Then there exists a function }
$$

$$
\phi(x) \text { On the interval }\left|x-x_{0}\right| \leq h \text {.Give the four properties of } \phi(x) \quad \text { (4 marks) }
$$

(ii) State the existence and uniqueness theorem (2 marks)
(iii) Show the convergence of the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=y ; \quad x_{0}=0, \quad y_{0}=1 \tag{5marks}
\end{equation*}
$$

(c) Reduce the third order equation below to a first order system of equations

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}+8 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+7 y=2 x^{3} \tag{4marks}
\end{equation*}
$$

(d) Define the following terms
(i) Total differential equation
(2 marks)
(ii) Ordinary point
(e) Find the values of x and y in the first order system

$$
\begin{equation*}
\frac{d x}{d t}=y \quad, \quad \frac{d y}{d t}=-2 x+3 y \tag{5marks}
\end{equation*}
$$

QUESTION TWO

(a) Solve $(y z+x y z) d x+(z x+x y z) d y+(x y+x y z) d z=0$
(13 marks)
(b) Locate and classify the singular points of the equation

$$
\left(x^{2}-8 x\right) \frac{d^{2} y}{d x^{2}}+(x+2) \frac{d y}{d x}+y=0
$$

QUESTION THREE

(a) Solve $X^{\prime}=A X$ where $X=\binom{x}{y}$ and $A=\left(\begin{array}{ll}2 & -5 \\ 2 & -4\end{array}\right)$
(b) Find two independent series solutions of the Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{10marks}
\end{equation*}
$$

QUESTION FOUR

(a) Obtain the indicial equation of

$$
16 x^{2} y^{\prime \prime}+(x+2) y=0
$$

(b) Solve $\frac{d^{3} y}{d x^{3}}=x e^{x}$ (9 marks)
(c) What are the three conditions for the exactness of

$$
\begin{equation*}
P d x+Q d y+R d z=0 \tag{3marks}
\end{equation*}
$$

QUESTION FIVE

a) Consider the first order vector equation $X^{\prime}(t)=A x(t)+B(t)$ where A is an $n \times n$ matrix of real numbers, $x(t)$ is a column vector function of t and $B(t)$ an n-dimensional column vector function of t.show that its characteristic polynomial is given by $|A-m I|$ (13 marks)
b) Determine the singular points of the equation

$$
\begin{equation*}
\left(x^{2}-81\right) \frac{d^{2} y}{d x^{2}}+9 x \frac{d y}{d x}+(x+9) y=0 \tag{5marks}
\end{equation*}
$$

c) What is a differential equation

