TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR THE SECOND SEMESTER IN THE THIRD YEAR OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE/ BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER

MAY 2016 SERIES EXAMINATION

UNIT CODE: AMA 4319

UNIT TITLE: TEST OF HYPOTHESIS

TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS)

- 1. a) Define the following terms as used in hypothesis testing
 - i. Type I error
 - ii. Level of significance
 - iii. Test statistic
 - iv. P-value

(8 marks)

b) It is suspected that a coin is no balanced (not fair). Let p be the probability of getting a head. To test H_0 : P = 0.5 against the alternative hypothesis H_1 : P > 0.5, a coin is tossed 15 times. Let Y equal the number of times a head is observed in 15 tosses of this coin. Assume the rejection region to be $\{Y \ge 10\}$. Find:

i. the probability of Type I error	(5 marks)
------------------------------------	-----------

ii. the probability of Type II error when $P = 0.7$	(3 marks)
---	-----------

iii. the rejection region of the form $\{Y \ge K\}$ for $\alpha = 0.01$ (3 marks)

c) Consider a random sample chosen from a normal population with $\sigma = 3.1$ being its true standard deviation. Determine how large a sample size should be for testing $H_0: \mu = 5$ against $H_1: \mu = 5.5$, in order that $\alpha = 0.01$ and $\beta = 0.05$ (5 marks)

d) Suppose we want to test the null hypothesis that the mean μ of normal population with variance $\sigma^2 = 1$ if μ_0 is against an alternative μ_1 where $\mu_1 > \mu_0$. Find the value of K such that $\overline{X} > k$ provides a critical region of size $\alpha = 0.05$ for a sample of size n. (6 marks)

QUESTION TWO (20 MARKS)

a) Define a rejection region of a test.	(2 marks)
b) Distinguish between the following concepts as used in hypothesis testing	
i. a one tailed test and a two tailed test.	(4 marks)
ii. a most powerful test and a uniformly most powerful test .	(4 marks)
c) The management of a local health club claims that its members lose on the average	e 15 pounds or more

within the first 3 months after joining the club. To check this claim, a consumer agency took a random sample of 45 members of this health club and found that they lost an average of 13.8 pounds within the first 3 months of membership, with a sample standard deviation of 4.2 pounds.

i.	Find the p – value of this test .	(8 marks)

ii. Based on the p-value in (i) would you reject the null hypothesis at $\alpha = 0.01$? (2 marks)

QUESTION THREE (20 MARKS)

a) State the generalized likelihood ratio test

b) Let X_1, X_2, \dots, X_n be a random sample from an $N(\mu, \sigma^2)$. Assume that σ^2 is unknown. We wish to test, at level α , $H_0: \mu = \mu_0 \quad vs. \quad H_1: \mu \neq \mu_0$. Find an appropriate likelihood ratio test.

(16 marks)

(4 marks)

QUESTION FOUR (20 MARKS)

a) Let $X_1, X_2, ..., ..., X_n$ be a random sample from a normal distribution with a known mean μ and variance $\sigma^2 = 1$. Test the hypothesis that :

 $H_0: \mu = \mu_0 \text{ against } H_1: \mu > \mu_0$

(10 marks)

b) Suppose X is a random sample from a normal population with mean μ and variance 16. Taking a sample of size n=16 find the most powerful test with significance level $\alpha = 0.05$, test the hypothesis H_0 : $\mu = 10$ ahainst H_1 : $\mu = 15$.

(10 marks)

QUESTION FIVE (20 MARKS)

a) Let X_1, X_2, \dots, X_n be a random sample from a normal distribution unknown mean μ . Test the hypothesis $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$. (15 marks)

b) In a random sample of 19 babies of a certain age, the standard deviation of their weights was 2.5 kg. Test the hypothesis at $\alpha = 0.01$ that

$$H_0: \sigma = 3$$
 against $H_1: \sigma \neq 3$

(5 marks)