

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN ELECTRICAL POWER ENGINEERING (CEPE 3) PP1

ELECTRICAL POWER EQUIPMENT

EEP 1204

END OF SEMESTER EXAMINATION SERIES: MAY 2016

TIME: HOURS

DATE:

Instructions to Candidates

You should have the following for this examination

Answer booklet, examination pass and student ID

This paper consists of five Questions; Attempt any THREE Questions.

DO not write on the question paper.

QUESTION ONE	QU	EST	ION	ONE
---------------------	----	-----	-----	-----

(a)	a) (i) Describe with the aid of a diagram the construction of a d.c machine.					
	(ii) Explain the main features and purpose of a D.C	face plate starter	(9marks)			
	Explain what is meant by commutation in a D.C. machine any adverse effects. (7	ine and what step marks)	s can be taken to			
(i	i) State methods of improving commutation	(4 marks	s)			
QUE	STION TWO					
(a) ((i) state two methods by which windings are would a	round the armatu	re.			
(i	i) Derive the emf equation of a generator	(8n	arks)			
(b)(i) Describe commutator windings					
(i	i)State three items that constitute the impendence of	the generator	(8marks)			
(b)	Explain the difference between wave winding and la	p winding	(4marks)			
QUE	STION THREE					
• • • • • • • • • • • • • • • • • • • •	i) With the aid of a diagram explain how a three phas-delta method.	se induction moto	r is started using			
(i	i) State the procedure as the induction motorspeeds	up	(9marks)			
(a)	(i) Explain how a squirrel cage induction motor of (ii) State its advantage over the other induction m		(6marks)			
` '	State typical applications for squirrel cage indu arks).	ction motors in	n the industries			
QUE	STION FOUR					
a)	(i) With the aid of a diagram describe the constructused in large synchronous generators.	ctional details of o				

(ii) If the generator has four poles, calculate:_

	II.	The generated	frequency at full load	(8marks)				
b)	(i)Explain (7 marks)	(i)Explain the 'V" characteristics of the synchronous motor s . (7 marks)						
c)	(ii) State t	(ii) State three advantages of a synchronous motor over the normal induction						
	motors	motors		(7 marks)				
QU	ESTION FIVE							
(a)		d of a diagram expuction motor.	plain the principle of operat	ion of a capacitor start single				
((ii) State two a	applications for the	e motor in (a) (i) above	(7marks)				
b)	(i) Draw the ty	pical torque/spee	ed characteristics of the sing	gle phase induction motor.				
	ii) State how the	he direction of rot	tation of a single phase indu	ction motor can be changed.				
c.	Explain briefly	y why a single pha	ase motor is not self-starting	g (5marks)				

The generator speed when generating 5Hz

I.