

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BUIDLING & CIVIL, ELECTRICAL AND ELECTRONICS ENGINEERING AND MCHANICAL & AUTOMOTIVE ENGINEERING

SCH 2101 : CHEMISTRY I

SPECIAL/SUPPLEMENTARY EXAMINATION

FEBRUARY 2013 SERIES

<u>2 HOURS</u>

Instructions to candidates:

This paper consist of **FIVE** questions Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

(i) Define an orbital of electrons

(1mark)

- (ii) Discuss briefly the formation for chemical bond in terms of orbital theory.(6marks)
- (iii) State the following principles and rules as used in electron distribution
 - (a) Pauli's exclusion principle
 - (b) Hund's Rule
 - (c) Aufbau principle
- (iv) Draw the shape of the following orbitals
 - ^(a) $2P_z$, (b)1S (c) d_z^2 (d) dx^2y^2

(4marks)

(6marks)

(v) Calculate the lattice energy of KCl from the following data (please show all the steps)

(10marks)

(a)	Enthalpy of sublimation of potassium	=	90.9KJmol ⁻¹
(b)	Ionization energy of potassium	=	418.7KJmol ⁻¹
(c)	Enthalpy of dissociation of chlorine	=	240KJmol ⁻¹
(d)	Electron affinity of chlorine	=	-348.7KJ mol ⁻¹
(e)	Enthalpy of formation of KCl	=	-440.3KJ mol ⁻¹

^(f) Briefly discuss the formation of metallic bonds. (3marks)

Question TWO

- i) Define the following terms as used in kinematics
 - (a) Molecularity
 - (b) Order of the reaction
 - (c) Reaction Rate
 - (d) Complex reaction

		(4marks)
ii)	Outline factors which influence Rate of reaction	(5marks)

iii) Define farcical life period or Half life period as used in kinematics

(2marks)

- iv) The half-life period of a reaction of the first order is 300s. Calculate its rate constant in seconds and minutes. (3marks)
- v) The rate constant of a zero order reaction is 0.2moldm⁻³h⁻¹. What will be the initial concentration of the reactant if, after half an hour, its concentration is 0.05mol dm⁻³?

(6marks)

Question THREE

i) Define equilibrium constant.

(1mark)

- ii) Show the relationship between the equilibrium constant and solubility product.(3marks)
- iii) The solubility of CaF₂ (molar mass = 78) in water is 1.6 x 10⁻²g l⁻¹ at 20°C. Calculate the solubility product of CaF₂.
 (6marks)
- iv) Predict whether there will be any precipitation on mixing 50ml of 0.001M NaCl solution

(10marks)

Question FOUR

i) State HESS'S Law

(1mark)

- ii) Calculate the enthalpy of the reaction 2C (Graphite) + $3H_2(g) C_2H_6(g)$ Given that
 - (1) C(graphite) + $O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393.5 KJ$
 - (2) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l) \Delta H = -285.8 \text{KJ}$
 - (3) $C_2H_6(g) + 7/2O_2(g) \longrightarrow 2CO_2(g) + H_2O \Delta H = -1560.0 \text{KJ}$ (10marks)
- iii) The enthalpy of solution of anhydrous CuCO₄ and CuCO₄ 5H₂O ar -15.89 and 2.80 Kcal respectively. Calculate the enthalpy of hydration of CuSO₄ to CuSO₄ 5H₂O (9marks)

Question FIVE

- ii) Define the following
 - a) Wavelength
 - b) Wave number
 - c) Frequency
 - d) Amplitude

(4marks)

- iii) The wavelength of blue light is 480nm. Calculate the frequency and wave number of this light ($C = (3 \times 10^8 \text{ms})$) (5marks)
- iv) Write down electrons configuration for the following elements.
 - a) Ti(Z = 22) (b) Sc (Z = 21) (c) Cr (Z = 24) (d) Cu(Z = 29)e) K (Z) = 19

(5marks)