

## **TECHNICAL UNIVERSITY OF MOMBASA**

FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

# UNIVERSITY EXAMINATION FOR: HIGHER DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

## EEP 3204: ELECTRICAL MACHINES I

# END OF SEMESTER EXAMINATION SERIES: MAY 2016 TIME: 2 HOURS

### DATE:

#### **Instructions to Candidates**

You should have the following for this examination *Answer Booklet, examination pass and student ID* This paper consists of FIVE questions. Attempt any **THREE Questions Do not write on the question paper.** 

#### **QUESTION ONE**

- a. Explain the disadvantages of Star-Delta Starting of Induction motor (3 marks)
- b. Explain why power factor of a single phase induction motor is low. (2 marks)
- c. Give two applications of capacitor-start motors. (2 marks)
- d. Give three methods employed in making single phase induction motors self-starting.

(3 marks)

- e. Explain three factors that affect the speed of a dc motor. (6 marks)
- f. A 500V shunt motor runs at its normal speed of 250 r.p.m when the armature current is 200A. The resistance of armature is  $0.12\Omega$ . Calculate the speed when a resistance is inserted in the field reducing the shunt field to 80% of normal value and armature current is 100A. (4 marks)

#### **QUESTION TWO**

- a. A 3- phase induction motor is wound for 4 poles and is supplied from 50Hz system. Calculate :
  - (i) The synchronous speed.
  - (ii) The speed of the motor when slip is 4%.
  - (iii) Rotor current frequency when motor runs at 600 r.p.m. (6 marks)
- b. A 4 pole, 3-phase, 50Hz induction motor has a star connected rotor. The rotor has a resistance of  $0.1\Omega$  per phase and stand still reactance of  $2\Omega$ /phase. The induced emf between the slip rings is 100V. if the full-load speed is 1460 r.p.m, calculate:
  - (i) The slip.
  - (ii) The emf induced in the rotor in each phase.
  - (iii) The rotor reactance per phase.
  - (iv) The rotor current.
  - (v) Rotor power factor.

- (8 marks)
- c. Explain how Torque-Slip Characteristics vary when adding resistance to rotor circuit? (2 marks)
- d. What is the condition for maximum torque in induction motor? (1 mark)
- e. State two advantage and one disadvantage of induction motors. (3 marks)

#### **QUESTION THREE**

- (i) Describe the Swinburne's test and state its two advantages. (5 marks)
- (ii) State the applications of Ward Leonard system.
- (iii) With the aid of a diagram describe the dynamic braking of DC motors. (4 marks)
- (iv) A 50Hz, 4 pole, 3-phase induction motor has a rotor current of frequency 2Hz. Determine:
  - a. Slip.
  - b. Speed of motor.

(4 marks)

(2 marks)

- (v) A 4-pole, 250W, 115V, 60Hz capacitor start induction motor takes a full-load line current of 5.3 A while running at 1760 r.p.m. If the full-load efficiency of the motor is 64%, find:
  - a. Motor slip.
  - b. Power factor.
  - c. Full load torque.

(5 marks)

#### **QUESTION FOUR**

(i) Describe the torque- slip characteristics of a three phase induction motor.

(5 marks)

(ii) Describe how speed control of a three phase induction motor by changing the applied voltage can be achieved and state any TWO limitations of this method.

(5 marks)

- (iii) A dc motor takes an armature current of 110A at 480V. The armature circuit resistance is  $0.2\Omega$ . The machine has 6 poles and the armature is lap connected with 864 conductors. The flux per pole is 0.05wb. calculate:
  - (a) The speed.
  - (b) The gross torque developed by the armature. (4 marks)
- (iv) A 500V, 37.3 kW, 1000 rpm dc shunt motor has on full load an efficiency of 90%. The armature circuit resistance is  $0.24\Omega$  and there is total voltage drop of 2v at the brushes. The field current is 1.8A. determine:
  - (a) Full load current.
  - (b) Full load shaft torque in N-m.
  - (c) Total resistance in motor starter to limit the starting current to 1.5 times the full load. (6 marks)

#### **QUESTION FIVE**

- (i) Explain the principle on which electric motor works. (4 marks)
- (ii) Explain how the speed of a dc motor can be regulated using the rheostatic control method. (4 marks)
- (iii) A 3-phase synchronous motor has 12 poles and operates from 440V, 50Hz supply. Calculate its speed. If it takes a line current of 100A at 0.8 power factor leading, what torque the motor will be developing? Neglect losses. (4 marks)
- (iv) A 75 Kw,3-phase Y connected, 50Hz, 440V cylindrical rotor synchronous motor operates at rated condition with 0.8pf leading. The motor efficiency excluding field and stator losses is 95% and  $X_s = 2.5\Omega$ . calculate:
  - a. Mechanical power developed.
  - b. Armature current.
  - c. Back emf.
  - d. Power angle.
  - e. Maximum torque of motor.

(8 marks)