

2

(6marks)

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

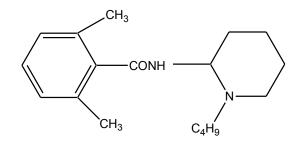
(A constituent of JKUAT) Faculty of Applied and Health Sciences DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF

TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4309 : DRUG ANALYSIS

SPECIAL/SUPPLEMENTARY EXAMINATION

FEBRUARY 2013 SERIES HOURS Instructions to candidates:


a) Define the following terms

This paper consist of **FIVE** questions Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

	(i)	Centrifugation	
	(ii)	Retention time	
	(iii)	Enzyme mutipured immunoassay (EMIT)	
b)	State F	OUR conditions that determine vetention times in HPLC	(4marks)
c)	Using equation explain the principle behind Karl-Fishcher titration and its importance in pharmaceutical analysis (5marks)		1
d)	List TI	IREE components of the EMIT assay method	(3marks)
e)	(i) Li	st any TWO applications of mass spectrometry in drug analysis	(2marks)
	(ii) Consider the drug bupiracaine below. Its mass spectrum showed a base peak at		e peak at
	m/	z 140. Account for the fragment giving the mass unit	(4marks)

©2013 The Mombasa Polytechnic University College

- f) (i) Name TWO substances used as stationary phases in TLC (2marks)
 - (ii) State the stationary and the mobile phase in each type of chromatography below
 - I. TLC
 - II. Column
 - III. Gas
 - IV. HPLC

Question TWO

- a) An infusion stated to contain 0.95% w/v NaCl was diluted so that its Na content could be determined by flame protometry. The following dilutions were carried out:
 - (i) 10ml of the sample was diluted to 250ml with water
 - (ii) 10ml of the diluted sample was further diluted to 200ml with water.

The sample was found to contain 0.74mg /100ml of Na calculate ethe % w/v of NaCl in the infustion (6marks)

b) State FOUR applications of UV-Vis spectroscopy in pharmaceutical analysis

(4marks)

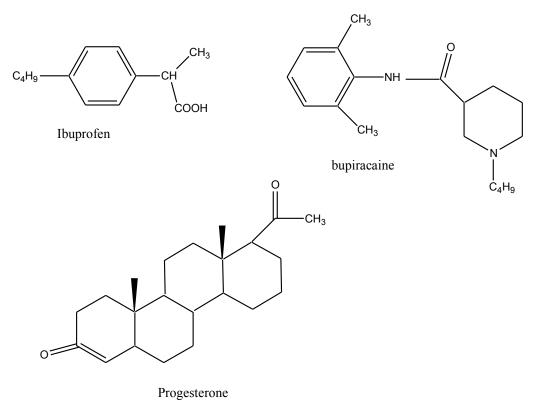
c) State THREE differences between solid-phase and liquid-liquid extraction techniques.

(6marks)

d) List any FOUR methods of defecting compounds on a TLC plate following its development with a mobile phase. (4marks)

Question THREE

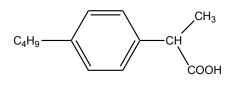
a)	List any TWO advantages of liquid-liquid extraction	(2marks)
b)	List FOUR limitations of GC in drug analysis	(4marks)


(4marks)

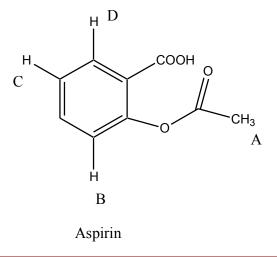
- c) State THREE applications of NMR spectroscopy in drug analysis (3marks)
- d) State THREE differences between normal and reverse phase as used in HPLC (6marks)
- e) Consider the following compounds. Rank them in the order of their vetention times from lowest to highest on a DEGS-GC column. Explain your reasoning (5marks)

Compound	Boiling point (°C)
Propionic acid	141
2-Hexanol	140
Ethylpropanoate	142
3,4-dimethylheptane	140

Question FOUR


- a) List FOUR factors to be considered when choosing a solvent system for an acid-base extraction (4marks)
- b) Consider the following drugs mixture. Using a flow chart, describe how each drug would be separated and isolated based on its acid-base properties (8marks)

- c) A neutral compound has a partition coefficient of 5 between ether and water.
 - (i) Define the term partition co-efficient (2marks)
 - (ii) What % of the compound would be extracted from 10ml of water if:-
 - (I) 30ml of ether were used to extract the compound
 - (II) Three 10ml volumes of ether were used in succession to extract the compound. (6marks)


Question FIVE

- a) Explain fully using equations diazotization titration and state its importance in drug analysis. (4marks)
- b) Differentiate between complexinetric titiatrors and redox titrations. (4marks)
- c) Consider the drug ibuprofen below
 - (i) Draw the structure of the ionized form at pH = 7.0 (2marks)
 - (ii) Calculate its % ionization at pH = 7.0 (4marks)

- d) Consider the analgesic aspirin below
 - (i) How many H-NmR and 13O-NMR peaks can be observed? (2marks)
 - (ii) Predict the multiplicity of protons A,B,C and D (4marks)

