

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4206 : CHEMISTRY PROCESS

SPECIAL/SUPPLEMENTARY EXAMINATION

FEBRUARY 2013 SERIES HOURS Instructions to candidates:

This paper consist of **FIVE** questions Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

- a) Multiple choice
 - (i) The objective of material and energy balance is to assess the;
 - (A) Input-output
 - (B) Conversion efficiency
 - (C) Losses
 - (D)All of the above
 - (E) None of the above

(10marks)

2

- (ii) In the material balance of a process or unit operation process which component will not be considered on the input side?
 - (A)Chemicals
 - (B) Air
 - (C) Recycle
 - (D)By product
- (iii) Sankey diagram shows in graphics
 - (A)Energy input
 - (B) Energy output
 - (C) Energy balance
 - (D)All of the above
- (iv) In a furnace, the lower the exhaust temperature the _____ is the furnace efficiency.
 - (A)Lower
 - (B) Moderate
 - (C) Higher
 - (D)None of the above
- (v) Energy supplied by combustion of fuel is equal to

(A) Mass of fuel consumed X its calorific value

(B) Man of fuel consumed X its density

- (C) Mass of duel consumed X its specific heat
- (D) Mass of fuel consumed X heat capacity
- (vi) If feed of a hundred tones per hour at 5% conconcentration is fed to a crystallizer, the product obtained at 25% concentration is equal to ______ tones per hour.
 - (A)20
 - (B) 25
 - (C) 35
 - (D)40

- (vii) Which of the following is the predominant loss in a furnace oil fired boiler.
 - (A)Dry flue gass losses
 - (B) Heat loss due to moisture in air
 - (C) Heat loss due to radiation and convection
 - (D) Heat loss due to moisture in the fuel
- (viii) In a chemical reaction of two reactions A (200Kg) and B(200Kg), the conversion is 50% and A and B reacts in equal proportions. Calculate the weight of product formed.
 - (A)150Kg
 - (B) 200Kg
 - (C) 250Kg
 - (D)400Kg
- (ix) In a utility steam boiler, heat loss due to radiation is normally is a range of
 - (A)10%
 - (B) 14%
 - (C) 1%
 - (D)8%
- (x) Which one is a secondary form of energy
 - (A)Furnace oil
 - (B) Natural gas
 - (C) Electricity
 - (D)Coal
- b) Outline TWO ways in which the study of material and energy balance is useful for a top manager. (2marks)
- c) Consider the following pair of reations
 - A \rightarrow 2B(desired)
 - $B \rightarrow C (undesired)$

100moles of A are fed to a batch reactor and the final product contained 10moles of A,

160moles of B and 10moles of C. Calculate the;

- i) Percentage yield of B
- ii) Selectivity of B relative to C. (2marks)
- iii) Extent of the reactions. (3marks)
- d) Study the process given below and answer the questions that follow

Determine the

- (i) Overall conversion (2marks)
- (ii) Single pass conversion (2marks)
- e) (i) Differentiate between latent and sensible heat. (2marks)
 - (ii) A ball of 2Kg rolls from the top of a platform along the staircase to the floor as shown in the figure below.

Question TWO

100% methane is fed into a burner with 130% excess air. Assume complete combustion occurs,

(i) Draw a well labellebed flow diagram for the process. (4marks)

(ii) Determine

(a)	The flow rates of the product gases.	(9marks)
-----	--------------------------------------	----------

(b) % mole of the product gas both as stock and or sat analysis. (7marks)

Question THREE

a) Calculate the composition of gases obtained by the burning of pure FeS_2 with 60% excess air. The oxidation proceeds to the reaction

 $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8 \text{ SO}_2$

Assume complete conversion and a basis of 4kmol of FeS₂. (5marks)

b) When 0.00Kg of KOH are added to 200g of water using a calorimeter (Cp = 493.24J/K), the temperature rises from 23.4 to 35°C. Calculate the molar heat of solution.

 $KOH(s) \rightarrow K^{+}(aq) + OH^{-}(aq)$

Specific capacity of water = that of KOH(aq) solution = 4.18J/gK.

(K = 39, O = 16, H = 1)

(5marks)

c) An acetone/methanol solution containing 75mol% acetone is heated to a temperature where a liquid and vapour phase coexists. The vapour phase contains 85mol% acetone while the liquid phase contains 50mol% acetone.

The flow rate of the solution is 100mol/hr

- (i) Represent this information in a well labeled process flow diagram. (3marks)
- (ii) Determine the flow rates of the liquid and vapour streams exiting the separation chamber. (7marks)

Question FOUR

a) A textile dryer is found to consume 4m³/hr of natural gas with a calorific value of 800KJ/mol. The throughput of the dryer is 60Kg of wet cloth per hour, drying it from 55% moisture to 10% moisture, taking into account the latent heat of evaporation (2257KJ/Kg); (molar gas vol.at STP =22.4 litres)

Calculate

(i)	The heat needed in the process.	(5marks)
(ii)	Heat used in the process	(3marks)
(iii)	Thermal efficiency of the dryer.	(2marks)

b) A paint mixture containing 25% of a pigment and the balance water sells for Ksh 18/Kg

and a mixture containing 12% pigment for Ksh 10/Kg. A paint retailer produces a blend containing 17% pigment.

- i) Draw a well labeled diagram for the process (3marks)
- ii) How much should the product be sold (per Kg) to yield a 10% profit? (7marks)

Question FIVE

a) For the reaction $A \rightarrow 2B + C$ with inerts I present in the system, calculate

(i)	$\mathrm{DH}^{\mathrm{o}}_{\mathrm{RX}}$					(3marks)	
(ii)	DCp						(3marks)
(iii) $DH_{RX}(400)$				(4marks)			
Additional information							
H° _A (29	8)	=	- 100Kcal/mol A	Сра	=	80cal/mol°C	
H°B (2	98)	=	-40Kcal/molB	Cp_{B}	=	20cal/mol°C	
H°C (2	98)	=	- 30kcal/mol°C	Срс	=	30cal/mol°C	
H° _I (29	8)	=	-100kcal/molI	CpI	=	190cal/mol°C	

b) An autoclave contains 1000cans of pea soup. It is heated to an overall temperature of 100°C. The specific heats of the pea soup and the can metal are 4.1KJ/Kg°C and 0.50KJ/Kg°C respectively. The weight of each can is 60Kg and it contains 0.45Kg of pea soup. The cans are to be cooled to 40°C before leaving the autoclave. Assume that the heat content of the autoclave walls above 40°C is 1.6×10^4 KJ and that there is no heat loss through the walls. Let w = the weight of cooling water required; and the datum temperature be 40°C the temperature of the cans leaving the autoclove. Cooling water enters at 15°C and leaves at 35°C.

(i)	Determine the heat entering the autoclave	(5marks)
(ii)	Determine the heat leaving the autoclave.	(3marks)
(iii)	Determine the amount of cooling water required.	(2marks)