TECHNICAL UNIVERSITY OF MOMBASA

SMA 2370 CALCULUS IV

2015/2016

END OF SEMESTER TWO YEAR THREE EXAMINATION FOR THE DEGREE OF BACHELOR OF CIVIL AND MECHANICAL ENGINEERING

QUESTION ONE (30MARKS) COMPULSORY

a) If
$$\phi = x^2 yz^3$$
 and $A = xzi - y^2 j + 2x^2 yk$, find

i.
$$\nabla \phi$$
 (3mks)

ii.
$$Div(\phi A)$$
 (3mks)

iii.
$$Curl(\phi A)$$
 (3mks)

b)

- i. Find the directional derivative $U=2x^3y-3y^2z$ at P(1,2,-1) in a direction toward Q(3,-1,5) (6mks)
- ii. In what direction from P is the directional derivative maximum? (1mk)
- iii. What is the magnitude of the maximum directional derivative (2mks)
- c) Identify the surface generated by the equation $r^2 4r\cos\theta = 14$ (4mks)
- d) Sketch the region R in the xy plane bounded by $y = x^2, x = 2, y = 1$ (2mks)
- e) Evaluate the double integral $\iint (x^2 + y^2) dx dy$ (3mks)
- f) Evaluate $\int_{(0,1)}^{(1,2)} (x^2 + y^2) dx dy$ (3mks)

QUESTION TWO (20MARKS)

a) Evaluate $\int A.dr$ from (0,0,0) to (1,1,1) along the following paths if

$$A = (3x^{2} - 6yz^{2})i + (2y + 3xz)j + (1 - 4xyz^{2}k)$$
i. $x = t, y = t^{2}, z = t^{3}$ (5mks)

ii. The straight lines from (0,0,0) to (0,0,1) then to (1,1,1) (12mks)

iii. The straight line joining (0,0,0) and (1,1,1) (3mks)

QUESTION THREE (20MARKS)

a) Verify green's theorem in the plane for $\int_c (2xy - x^2) dx + (x + y^2) dy$ where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$ (20mks)

QUESTION FOUR (20MARKS)

- a) Evaluate $\iint r.nds$ where s is the closed surface. (5mks)
- b) Prove that $F = (2xz^3 + 6y)i + (6x 2yz)j + (3x^2z^2 y^2)$ is a conservative force field.
- c) Find the directional derivative of $F = x^2 yz^3$ along the curve $x = e^{-u}$, $y = 2\sin u + 1$, $z = u \cos u$ at the point where u = 0 (10mks)

QUESTION FIVE (20MARKS)

a) Given that $f(x, y) = 2x^3 + 3xy^2$ find

i.
$$f_{xx}$$
 (1mk)

ii.
$$f_{xy}$$
 (1mk)

iii.
$$f_{yy}$$
 (1mk)

- b) Find the equation for the tangent plane to the surface $x^2yz + 3y^2 = 2xz^2 8z$ at the point (1,2,-1) (7mks)
- c) Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225, z = 0$ (10mks)