TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS AND PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL, CIVIL AND MECHANICAL ENGINEERING
SMA 2471 NUMERICAL ANALYSIS 1
END OF SEMESTER EXAMINATION
SERIES: MAY 2016
TIME: 2 HOURS
DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID

This paper consists of five questions. Attempt question one and any other two questions.

Do not write on the question paper.

QUESTION ONE

(a) Define an interpolating polynomial.
(b) Evaluate first and second derivatives of \sqrt{x} at $\mathrm{x}=1.10$ given that

x	1.1	1.2	1.3	1.4	1.5
y	-1.62	0.16	2.45	5.39	9.13

(c) Show that,

$$
\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}=e^{x}
$$

(3 mks)
d) Solve $\frac{d y}{d x}=1-y, \mathrm{y}(0)=0$, in the range $0 \leq x \leq 0.3$ by taking $\mathrm{h}=0.1$ using the modified Euler's method.
(6 mks)
e) Approximate $\mathrm{y}(0.6)$ using Milne's Predictor-Corrector method with $\mathrm{h}=0.1$ for the equation,
$\frac{d y}{d x}=-2 x y$, given that;

x	0.0	0.1	0.2	0.3	0.4
y	1.0000	0.9900	0.9608	0.9139	0.8522

(4 mks)
f) Using Newton's forward interpolating formula, find the missing values in the table of $f(x)$ below:

x	45	50	55	60	65
$\mathrm{f}(\mathrm{x})$	3		2		-2.4

(6 mks)
g) Find a unique quadratic polynomial of degree two or less such that $f(0)=1, f(1)=3$ and $f(3)=55$ using the Lagrange interpolation.
(6 mks)

QUESTION TWO

(a) Determine the step size h to be used in the tabulation of $f(x)=\sin x$ in the interval $(1,3)$ so that a linear interpolation is correct to 4 dp .
(7 mks)
(b) A particle moves along a straight line at a time t with it's distance S from a fixed point of the line given by;

$$
\int \frac{d S}{d t}=t\left(8-t^{3}\right)^{\frac{1}{2}} \text {. Using the Simpson's } \frac{1}{3} \text { rule, calculate the approximate distance travelled }
$$ by the particle from time $\mathrm{t}=0.8$ to 1.6 using 8 strips correct to 4 decimal paces.

(c) Using Taylor series method, solve $\frac{d y}{d x}=x^{2}-y, \mathrm{y}(0)=2$, at $\mathrm{x}=0.1,0.2,0.3$, and 0.4 correct to 4 decimal places.

QUESTION THREE

a) Find by the Lagrange's method the function $f(x)$ given the values

| x | 1 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 6 | 12 | 24 |
| | | | |
| Hence find | | | $f(2)$ |

b) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ using the trapezoidal rule with $\mathrm{h}=0.1$.
c) By Newton-Raphson method, find the positive root to the equation $2 x^{2}+7 x-6=0$ correct to 3 significant figures.

QUESTION FOUR

(a) Use Euler's method to solve

$$
\frac{d y}{d x}=\frac{t-y}{2},
$$

if $\mathrm{y}(0)=1$ and $\mathrm{h}=1$, up to $\mathrm{n}=2$.

$$
(5 \mathrm{mks})
$$

(b) Apply the second order Runge-Kutta method to find $y(0.2)$ if;

$$
\begin{equation*}
\frac{d y}{d x}=y-x \quad \text { where } \mathrm{h}=0.1 \text { correct to } 4 \text { significant figures. } \tag{7mks}
\end{equation*}
$$

(c) Using Gauss' backward interpolation, interpolate the sales of a certain commodity for the year 1976 given that;

Year	1940	1950	1960	1970	1980	1990
Sales (in pounds)	17	20	27	32	36	38

(8 mks)

QUESTION FIVE

a) Integrate $\int_{2}^{3}\left(x^{2}-2\right) d x$ by Simpson's one third rule, taking 5 ordinates correct to 4 d.p. (6 mks)
b) Use Romberg's method to evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ correct to 4 d.p by taking $h_{1}=0.25$ and $h_{2}=0.125$ correct to 4 d.p.
c) Obtain Picard's second approximate solution of the initial value problem,

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0 . \tag{6mks}
\end{equation*}
$$

