Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4106: PHYSICAL CHEMISTRY I

SPECIAL/SUPPLEMENTARY EXAMINATION

FEBRUARY 2013 SERIES 2

HOURS
Instructions to candidates:
This paper consist of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

Question ONE

a) Differentiate between ideal and nonideal solution
(4marks)
b) Mixture of propanone and trichloromethane shows negative deviation from Roult Law sketch and label
(4marks)
(i) Pressure - composition curves
(ii) Boiling point - Composition curves
c) Explain how temperature affect rate of solubility.
d) 3.1grams of urethane was dissolved in 68.44 grams of methanol $\mathrm{CH}_{3} \mathrm{OH}$ raised the boiling point by $0.32^{\circ} \mathrm{C}$. Given ebuliscopic constant as $0.88 \mathrm{Km}^{-1}$ Calculate: ($\mathbf{6 m a r k s}$)
(i) Rmm of urethane
(ii) Mole fraction of urethane
(iii) Vapour pressure of solution given vapour pressure of methane as 23.48 mmHg
e) Calculate pH of a buffer solution containing 0.8 m Acetic acid and 0.3 M sodium acetate given ionization constant of acid as 1.819×10^{-5}
f) (i) State SIX assumptions made in Kinetic theory of gases.
(ii) The standard free energy change at $25^{\circ} \mathrm{C}$ was $-24.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{Calculate}$ value of equilibrium constant Kp .
g) Proof that for gas molecules average KE is proportioned to absolute temperature.

(3marks)

Question TWO

a) 28% of liquid $\mathrm{A}(\mathrm{Rmm}-140)$ has vapour pressure of 160 mmHg of $37^{\circ} \mathrm{C}$. Given vapour pressure of water at $37^{\circ} \mathrm{C}$ as 150 mmHg . Calculate vapour pressure of pure liquid. (4marks)
b) The solubility of CuBr_{2} is 2.0×10^{-4} moles/litre at $25^{\circ} \mathrm{C}$. Calculate its solubility product Ksp.
c) A given mass occupies 919 ml in dry state of S.T.P. The same mass when collected over water at $15^{\circ} \mathrm{C}$ and 750 mmHg pressure occupies are 1 L volume. Calculate vapour pressure of water at $15^{\circ} \mathrm{C}$.
(4marks)
d) Explain briefly deviation of gases at high pressure and low temperature.
e) State:-
(i) Characteristic of dynamic equilibrium
(2marks)
(ii) Success of Lewis theory.
(2marks)
(iii) Limitation of Arrhenius theory
(2marks)

Question THREE

a) Calculate partial pressure of chloride in the following reaction mixture (3marks)

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Kp} \quad=\quad 1.05
$$

Given equilibrium partial pressure of PCl_{5} and PCl_{3} as 0.875 and 0.463 atmospheric respectively.
b) Define the following terms
(i) Common ion effect
(ii) Organic indicators
c) A buffer solution contain 0.2 moles of Acetic acid and 0.25 moles of potassium acetate per liter of solution. Calculate pH of solution if 0.5 ml of 1 M HCl is added. (4marks)
d) State:-
(i) Charles Law
(2marks)
(ii) Delton Law
(2marks)
e) 2 gms of Neon was mixed with 1 gram of Helium in 8 litre vessel exert ctatal pressure of 0.98 atmospheric calculate partial pressure of Neon
f) Define :-
(i) Indicator
(1.5marks)
(ii) Acidic salt
(1.5mark)
(iii) Electrolyte
(1mark)

Question FOUR

a) 40 grams of acetic acid was mixed with 30 grams of ethanol in 2 L vessel to form water and ethyl acetate. At equilibrium there were 441 grams of water. Calculate equilibrium constant Kx
(6marks)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
b) State
(i) Limitation of Arrhenius theory
(ii) Avogadros Hypothesis
(iii) Law of equilibrium
c) Define organic indicators and explain colour change of methyl orange indicator in Basic solution
d) A buffer was prepared by mixing 0.1 M acetic acid and 0.01 M sodium acetate in 1 litre given dissociation constant of Acid as 1.8×10^{-5} calculate:-
(5marks)
(i) pH of this buffer solution
(ii) pH change when 1 ml of 1 MNaOH is added to one litre of this buffer.

Question FIVE

a) 48.6 gramms of Ammonia occupies a volume of 5.4 L at $45^{\circ} \mathrm{C}$. Using Van deer walls equation calculate pressure it will exert given $\mathrm{a}=138.9 \mathrm{KPa} \mathrm{L}{ }^{2} / \mathrm{mol}, \mathrm{b}=0.0371 \mathrm{~L} / \mathrm{mol}$
$\mathrm{R}=8.314 \mathrm{pam}^{3} / \mathrm{K} . \mathrm{mol}$
$\left(\mathrm{P}+\mathrm{a}\left(\mathrm{n}^{2} / \mathrm{v}^{2}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}\right)$
(4marks)
b) State :-
(i) Three assumptions made in deriving ideal gas equation
(3marks)
(ii) Using Le Chatelier principle predict direction of equilibrium if volume and Temperature is decrease in the following equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \quad \Delta \mathrm{H}=57 \mathrm{Kj} / \mathrm{mol}^{-1}
$$

c) Define
(i) Solubility
(ii) Solubility product
(3marks)
d) Discuss how the following factors affect rate of solubility
(i) Temperature
(2marks)
(ii) Pressure
(2marks)
e) Derive ionic product K_{w}
(2marks)

