

Faculty of Engineering & Technology

Department of Building & Civil Engineering

UNIVERSITY EXAMINATION FOR DIPLOMA IN:

DIPLOMA IN CIVIL ENGINEERING

DBCE/Jan 2015/S-FT

EBC 2206: SOIL MECHANICS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME ALLOWED: 2 HOURS

Instruction to Candidates;

You should have the following for this examination;

- Answer booklet
- Pocket calculator

This paper consists of FIVE questions. Answer ANY THREE questions. Use neat, large and well labelled diagrams where required Maximum marks for each part of a question are as shown This paper consists of THREE printed papers.

QUESTION ONE

- (a) State **THREE** reasons that make the "triaxial shear strength test." preferred to the direct shear strength test." (6 marks)
- **(b)** The following results were obtained from drained shear strength tests done on a silty clay soil using a shear box.

Normal stress (KN/m²)	150	250	350	450
Shear stress at failure (KN/m²)	89	125	160	195

Determine the shear strength parameters for the soil tested.

- **(c)** Another specimen similar to the soil in 4.0 (a) is to be tested using triaxial apparatus under drained conditions, at a cell pressure of 100KN/m².
- (i) Determine deviator stress that is anticipated to act at failure,
- (ii) Calculate normal stress and shear stress that would develop on plane of failure.

(14 marks)

QUESTION TWO

- (a) Outline THREE modes of failure for triaxial test samples
- (9 marks)

(b) Outline any **ONE** condition of test applied in triaxial tests.

(5marks)

- (c) (i) Sketch typical graphical results expected from an undrained triaxial test.
 - (ii) Explain the sketch in (c) (i).

(6 marks)

QUESTION THREE

- (a) (i) Outline THREE conditions a foundation must satisfy.
- (ii) Briefly describe General mode of failure that can occur beneath a footing.

(12 marks)

(b) A square footing 2.2m x 2.2m is to be founded at a depth of 2.0m in a sand soil of the following properties: $\emptyset = 35^{\circ}$ C = 15KN/m² $\gamma_b = 17.5$ KN/m³ and $\gamma_{sat} = 20$ KN/m³ Determine the ultimate bearing capacity considering water table to be at foundation level.

(8 marks)

QUESTION FOUR

(a) State four assumptions made in Terzaghi's theory applied to footings. (8marks)

(b) A strip footing is to transmit a safe load of 325KN/m run at a depth of 2m to a ground of the following properties: $C = 18KN/m^2$ $\emptyset = 20^{\circ}$ $\gamma_b = 19 KN/m^3$

Using figure 1, determine breadth for the footing taking. Take factor of safety F = 3.

(12 marks)

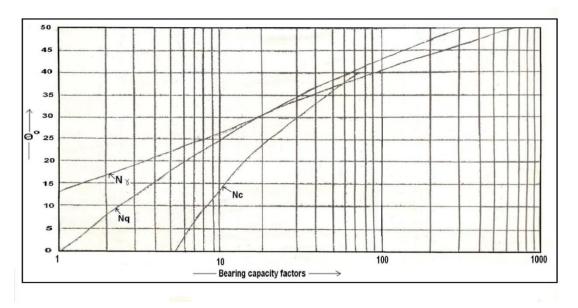


FIG.1

QUESTION FIVE

Figure 2 shows a retaining wall 10m high supporting cohesionless soils and having a horizontal surcharge of 12KN/m².

(a) Sketch a pressure distribution diagram

(15 marks)

(b) Determine (i) Magnitude of total active thrust

(ii) Position at which horizontal thrust acts.

(5 marks)

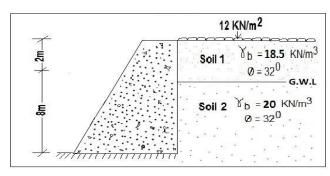


FIG.2